Abstract:
The downlink (DL) communication of single channel codewords is supported by providing a multiple-input multiple-output (MIMO) transmitter and receiver. The transmitter includes N T transmit antennas for transmitting spatial streams to a receiver having N R receive antennas, a precoder and a space- time or space-frequency matrix construction unit in communication with the precoder and the transmit antennas. The space-time or space-frequency matrix construction unit constructs a matrix that defines a threaded algebraic space- time (TAST) codeword based on a number of virtual antennas, N V , and the number of transmit antennas, N T . The transmitter operates in an open loop mode when no feedback information from the receiver is available, a semi-open loop mode when channel rank information is available, and a closed loop mode when channel state information (CSI) is available. The receiver is configured to provide feedback to the transmitter on a per received spatial stream basis.
Abstract:
The present invention is related to a method and apparatus for implementing space frequency block coding (SFBC) in an orthogonal frequency division multiplexing (OFDM) wireless communication system. The present invention is applicable to both a closed loop mode and an open loop mode. In the closed loop mode, power loading and eigen-beamforming are performed based on channel state information (CSI). A channel coded data stream is multiplexed into two or more data streams. Power loading is performed based on the CSI on each of the multiplexed data streams. SFBC encoding is performed on the data streams for each of the paired subcarriers. Then, eigen-beamforming is performed based on the CSI to distribute eigenbeams to multiple transmit antennas. The power loading may be performed on two or more SFBC encoding blocks or on each eigenmodes. Additionally, the power loading may be performed across subcarriers or subcarrier groups for weak eigenmodes.
Abstract:
A method and apparatus for radio resources control in a multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system are disclosed. Channel metric is calculated for each of a plurality of transmit antennas. Sub-carriers are allocated to each transmit antenna in accordance with the channel metric of each transmit antenna. Signals are transmitted using the allocated sub-carriers at each antenna. Adaptive modulation and coding and transmit power control of each sub-carrier may be further implemented in accordance with the channel metric. Power control may be implemented per antenna basis or per sub-carrier basis. In performing power control, a subset of transmit antennas may be selected and waterpouring may be applied only to the selected antennas. Waterpouring may be based on SNR instead of channel response.
Abstract:
A method and apparatus for performing channel estimation using time-frequency localized pilots and de-noising techniques are disclosed. A transmitter sends pilot symbols which are localized in a joint time-frequency domain to a receiver for channel estimation. The receiver receives the pilot symbols and performs a time-frequency analysis, such as a discrete Gabor transform (DGT), to transform the received pilot symbols to a joint time-frequency domain. The receiver applies a de-noising technique, such as masking, to separate the pilot symbols from the embedded noise in the joint time-frequency domain. The receiver performs a time-frequency synthesis, such as an inverse discrete Gabor transform (IDGT), to generate a noise-removed pilot symbols in a time domain. The noise left after de-noising is only that part that overlaps with the pilot symbols in the joint time-frequency domain. The receiver then performs channel estimation with the noise-removed pilot symbols.
Abstract:
A method and apparatus for automatically correcting the frequency of a local oscillator of a receiver. A primary common pilot channel (CPICH) code sequence is generated by a CPICH code generator based on a reference cell identification signal and a frame start signal. The received despread CPICH code sequence is used to generate an estimated frequency error signal. A control voltage generator based on the estimated frequency error signal generates a control voltage signal. The CPICH code generator generates the CPICH code sequence based on signals received from a high speed downlink packet access (HSDPA) serving cell when HSDPA is active, or a timing reference cell when HSDPA is not active. The present invention achieves full maximum ratio combining gain when space-time transmit diversity (STTD) is used, even without receiving a transmit diversity indication.
Abstract:
The UE is in communication with one of the plurality of base stations and receives a communication signal from the base station through the CDMA receiver. The communication signal is correlated by said receiver using a delay locked code tracking loop (10), that estimates and tracks a channel delay of the communication signal. The tracking loop comprises a reference code generator (16) for generating a reference code signal and an interpolator (11) for generating timed signal versions in response to the receipt of said communication. A timed signal correlator (12a, 12b, 13a; 13b), also included in the tracking loop for correlating at least two of the timed signal versions with the code reference signal. The result of the correlation is used for generating an error signal. An automatic power normalization loop (APN), that is responsive to the interpolator (11), generates a power error signal that normalizes the error signal through a normalization circuit (14).
Abstract:
A wireless transmit/receive unit (WTRU) uses an oscillator providing accuracy for synchronized communications parameters in an active mode, and operates at reduced power during a discontinuous reception (DRX) mode. A real time clock (RTC) is used as the frequency standard during the reduced power operation, and a frequency adjustment is effected while the RTC is used as the frequency standard. By effecting the frequency adjustment, the RTC is able to be used as the frequency standard for substantial time periods, thereby reducing power consumption of the WTRU during the DRX mode.
Abstract:
A method and system for uplink (UL) synchronization of an uplink transmission from a plurality of wireless transmit/receive units (WTRUs) to a Node-B in a code division multiple access (CDMA) system. A Node-B receives a transmission including a UL synchronization (SYNC_UL) sequence from a WTRU. A sampler samples the transmission at a sampling rate which is higher than a chip rate. The samples are down-sampled and the SYNC_UL sequence is detected at a lower rate. A first significant path location of the detected SYNC_UL sequence is determined, and based on the first significant path location, a final significant path location is determined. The final significant path location is quantized and UpPCHPOS is transmitted to the WTRU to adjust a UL transmission timing.
Abstract:
A digital timing synchronizer of a receiver is provided for timing synchronization to a transmitter in a wireless communication system, wherein the received signal has a timing error with respect to a reference code. A channel estimator (11) estimates an initial code phase of the received signal. A code generator (13) generates a timing reference code that is adjustable by integer increments. An interpolation feedback circuit (35) is configured for interpolation and correction of the timing error, whereby the interpolation (14) is achieved through an integer code shift, plus a quantized fractional adjustment selected from a look-up table of quantized fractional adjustment values and their associated predetermined interpolator coefficients, from which a time corrected version of the received signal is produced.
Abstract:
A method and apparatus for combining space-frequency block coding (SFBC), spatial multiplexing (SM) and beamforming in a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. The system includes a transmitter with a plurality of transmit antennas and a receiver with a plurality of receive antennas. The transmitter generates at least one data stream and a plurality of spatial streams. The number of generated spatial streams is based on the number of the transmit antennas and the number of the receive antennas. The transmitter determines a transmission scheme in accordance with at least one of SFBC, SM and beam forming. The transmitter transmits data in the data stream to the receiver based on the selected transmission scheme.