Abstract:
A method for multicasting a packet begins by providing a buffer for each of two user equipments (UEs) in communication with a base station. A determination is made whether there is a previously unsent packet at the base station. A second determination is made whether both UE buffers are non-empty. A non-empty buffer is flushed if there is no previously unsent packet and if one of the buffers is non-empty. A packet is selected to be transmitted if there is a previously unsent packet or if both buffers are non-empty. The buffers are updated based on feedback received from the UEs.
Abstract:
The present invention relates to secret key generation and authentication methods that are based on joint randomness not shared by others (JRNSO), in which unique channel response between two communication terminals generates a secret key. Multiple network access points use a unique physical location of a receiving station to increase user data security. High data rate communication data is encrypted by generating a random key and a pseudo-random bit stream. A configurable interleaving is achieved by introduction of JRNSO bits to an encoder used for error-correction codes. Databases of user data are also protected by JRNSO-based key mechanisms. Additional random qualities are induced on the joint channel using MIMO eigen-beamforming, antenna array deflection, polarization selection, pattern deformation, and path selection by beamforming or time correlation. Gesturing induces randomness according to uniquely random patterns of a human user's arm movements inflected to the user device.
Abstract:
A wireless transmit receive unit (WTRU) and methods are used in a wireless communication system to process sampled received signals to establish and/or maintain wireless communications. A selectively controllable coherent accumulation unit produces power delay profiles (PDPs). A selectively controllable post processing unit passes threshold qualified magnitude approximation values and PDP positions to a device such as a rake receiver to determine receive signal paths.
Abstract:
A Node-B/base station has an access burst detector. The access burst detector comprises at least one antenna for receiving signals from users and a pool of reconfigurable correlators. Each correlator correlates an inputted access burst code at an inputted code phase with an inputted antenna output. An antenna controller selectively couples any output of the at least one antenna to an input of any of the correlators. A code controller provides to an input of each correlator an access burst code. The code controller controls the inputted code phase of each controller. A sorter/post processor sorts output energy levels of the correlators.
Abstract:
A Node-B/base station comprises a plurality of antennas (28I - 28M) for receiving user signals and a path searcher. The path searcher comprises a set of correlators (42-1, 42-2 … 42-P). Each correlator of the set of correlators correlates an inputted user code with an inputted antenna output. An antenna controller selectively couples an output of one of the plurality of antennas to an input of each.
Abstract:
A wireless time division duplex communication system using code division multiple access has a base station and user equipments. The system communicates using communication bursts. Each communication burst has a unique channelization code and a midamble code. Each midamble code is mapped to a set of at least one channelization code. For each communication burst to be transmitted in a time slot from the base station, the midamble code mapped to that burst's channelization code is determined. Communication bursts are generated and transmitted in the time slot. Each burst has the determined midamble code for its channelization code. The user equipment receives the bursts and determines each received midamble code. The user equipment determines the channelization codes of the transmitted communication bursts based on in part a result of the determining of each received midamble code.
Abstract:
A method and apparatus for encoding channel quality indicator (CQI) and precoding control information (PCI) bits are disclosed. Each of input bits, such as CQI bits and/or PCI bits, has a particular significance. The input bits are encoded with a linear block coding. The input bits are provided with an unequal error protection based on the significance of each input bit. The input bits may be duplicated based on the significance of each input bit and equal protection coding may be performed. A generator matrix for the encoding may be generated by elementary operation of conventional basis sequences to provide more protection to a most significant bit (MSB).
Abstract:
A method and apparatus for password management and single sign-on (SSO) access based on trusted computing (TC) technology. The methods implement the Trusted Computing Group (TCG)'s trusted platform module (TPM), which interacts with both proxy SSO unit and web-accessing applications to provide a secure, trusted mechanism to generate, store, and retrieve passwords and SSO credentials. The various embodiments of the present invention allow a user to hop securely and transparently from one site to another that belong to a pre-identified group of sites, after signing on just once to a secured proxy residing at the user's device.
Abstract:
A method and system for securing wireless communications is disclosed. In on embodiment, different security policies are used based on the distance between a receiver and a transmitter, whereby data in the wireless communications can only be demodulated if received in particular trust zones. In another embodiment, a plurality of bit stream fragments are transmitted by a plurality of transmitters to a receiver located in an area where transmission patterns radiated by the transmitters intersect. Alternatively, the receiver performs a function on packet data units (PDUs) transmitted by the transmitters. In yet another embodiment, primary modulation points of a modulation points which can be demodulated only by a receiver that is within range of the transmitter. In yet another embodiment, a main waveform is transmitted which overlays a QPSK signal with hierarchical modulation (HM) having encoded descrambling information.
Abstract:
A method and apparatus for efficient operation of an enhanced dedicated channel (E-DCH) are disclosed. A physical layer processing includes computation of various control parameters followed by actual processing of the data to be transmitted. In accordance with the present invention, the computation of the control parameters is performed asynchronously from the associated data operation. A medium access control (MAC) layer provides information needed for computation of the control parameters to the physical layer as early as possible, while the data is being processed in parallel. The provided data includes a hybrid automatic repeat request (H-ARQ) profile, a transport block size, power offset, or the like. By sending this data to the physical layer before MAC-e processing is complete, the latency constraint can be significantly relaxed.