Abstract:
A method and apparatus for processing multiple wireless communication services in a receiver. A receiver receives more than one wireless communication service simultaneously via a wireless interface. Each service is transmitted via a different carrier frequency band. The multiple received carrier signals are down-converted to an intermediate frequency (IF) band using a mixer and a local oscillator (LO). The LO and sampling frequencies are adjusted such that the converted IF band signals of the input signals are spectrally adjacent or overlapping each other to some degree. SINAD of the services is measured at each of a plurality of spectrally overlapping conditions. The LO frequencies and the sampling frequency are then adjusted based on the SINAD measurement results.
Abstract:
A received power of a code division multiple access (CDMA) signal is determined. Samples of a spectrum associated with the received CDMA signal are taken as received samples (108), which are then correlated with a code of the CDMA signal (110). For correlated samples below a first threshold, those correlated samples are processed by being made to zero. For samples between the first threshold and a second threshold (114), those correlated samples are processed by rescaling (116). The correlated samples above the second threshold are passed unchanged. The received power level of the received CDMA signal is determined using the correlated samples after the processing.
Abstract:
Apparatus for reducing adjacent channel interference between proximate wireless communication units. Each wireless communication unit includes a digital baseband circuit and an analog baseband circuit. The digital baseband circuit includes at least one group delay compensation equalizer and at least one finite-impulse response (FIR) filter. The analog baseband circuit includes a radio (transmitter section), a power amplifier and a narrowband filter. The narrowband filter compensates for deficiencies of the power amplifier including distortion and radio frequency (RF) power spill over. The group delay compensation filter compensates for undesired characteristics (e.g., group delay variation) exhibited by the narrowband filter.
Abstract:
An automatic gain control (AGC) method according to the present invention applies an initial gain by a digital AGC circuit in a timeslot is determined using a final calculated gain from the same timeslot in the previous frame together with an offset factor. An erase function is activated for a given data sample block when the number of saturated data samples that are detected within the block exceeds a threshold value. The power measurement made by the AGC circuit and used to update the gain is adjusted based on the number of measured data samples that are saturated. These elements provide a gain limiting function and allows limiting of the dynamic range for further signal processing.
Abstract:
A received power of a code division multiple access (CDMA) signal is determined. Samples of a spectrum associated with the received CDMA signal are taken as received samples, which are then correlated with a code of the CDMA signal. For correlated samples below a first threshold, those correlated samples are processed by being made to be zero. For samples between the first threshold and a second threshold, those correlated samples are processed by rescaling. The correlated samples above the second threshold are passed unchanged. The received power level of the received CDMA signal is determined using the correlated samples after the processing.
Abstract:
A received power of a code division multiple access (CDMA) signal is determined. Samples of a spectrum associated with the received CDMA signal are taken as received samples, which are then correlated with a code of the CDMA signal. For correlated samples below a first threshold, those correlated samples are processed by being made to be zero. For samples between the first threshold and a second threshold, those correlated samples are processed by rescaling. The correlated samples above the second threshold are passed unchanged. The received power level of the received CDMA signal is determined using the correlated samples after the processing.
Abstract:
A communication transmission emulator digitally emulates a plurality of signal impairments created by the transmission components and communication medium in a typical communication system. A variety of linear and non-linear distortion characteristics are impressed on a baseband signal between transmit and receive modems to effect thorough testing and optimization of modem performance without requiring transmission frequency components and/or communication channel. The communication transmission emulator comprises transmission channel transmit modules, receive modules and communication media modules. Transmit and receive modules accepting or outputting analogue or digital signals. The transmission emulator is configurable to allow a simulation of a single channel communication; a simulation of a full duplex communication; a simulation of a common base station receiver with multiple users transmitting and a simulation of a base station transmitter with multiple users receiving, all configurations with or without the communication media emulator module. The communication media modules simulate multipath signal components and distortions for the chosen medium.
Abstract:
Apparatus for reducing adjacent channel interference between proximate wireless communication units. Each wireless communication unit includes a digital baseband circuit and an analog baseband circuit. The digital baseband circuit includes at least one group delay compensation equalizer and at least one finite-impulse response (FIR) filter. The analog baseband circuit includes a radio (transmitter section), a power amplifier and a narrowband filter. The narrowband filter compensates for deficiencies of the power amplifier including distortion and radio frequency (RF) power spill over. The group delay compensation filter compensates for undesired characteristics (e.g., group delay variation) exhibited by the narrowband filter.
Abstract:
A method and apparatus for processing multiple wireless communication services in a receiver (100). A receiver (100) receives more than one wireless communication service simultaneously via a wireless interface. Each service is transmitted via a different carrier frequency band. The multiple received carrier signals are down-converted to an intermediate frequency (IF) band using a mixer (110, 116) and a local oscillator (LO). The LO and sampling frequencies are adjusted such that the converted IF band signals of the input signals are spectrally adjacent or overlapping each other to some degree. SINAD of the services is measured at each of a plurality of spectrally overlapping conditions. The LO frequencies and the sampling frequency are then adjusted based on the SINAD measurement results.
Abstract:
A communication transmission emulator digitally emulates a plurality of signal impairments created by the transmission components and communication medium in a typical communication system. A variety of linear and non-linear distortion characteristics are impressed on a baseband signal between transmit and receive modems to effect thorough testing and optimization of modem performance without requiring transmission frequency components and/or communication channel. The communication transmission emulator comprises transmission channel transmit modules, receive modules and communication media modules. Transmit and receive modules accepting or outputting analogue or digital signals. The transmission emulator is configurable to allow a simulation of a single channel communication; a simulation of a full duplex communication; a simulation of a common base station receiver with multiple users transmitting and a simulation of a base station transmitter with multiple users receiving, all configurations with or without the communication media emulator module. The communication media modules simulate multipath signal components and distortions for the chosen medium. In dependence upon the configuration, each module type and number can be individually configured, adding a plurality of linear and non-linear impairments to the baseband signal along with delay components to evaluate and optimize modem design and technology.