Abstract:
Disclosed are nickel-containing complexation precursors having high complexation activity for bidentate phosphite ligands. Also disclosed are methods of making the complexation precursors. The disclosed method of generating the nickel-containing complexation precursor includes including contacting a nickel starting material with a reductant under conditions sufficient to generate a nickel-containing complexation precursor having at least about 1,500 ppmw sulfur in the form of sulfide.
Abstract:
A novel nickel particulate form is provided that efficiently forms a zero-valent nickel complex with a phosphorus-containing ligands in an organic liquid to form a hydrocyanation catalyst. Particles in the nickel particulate form comprise nickel crystallites. For example, the nickel particulate form can have a BET Specific Surface Area of at least about 1 m2/gm; an average crystallite size less than about 20-25 nm, the nickel particulate form can have at least 10% of the crystallites in the nickel form can have can have a diameter (C10) of less than about 10 nm, and/or there are on average at least about 1015 surface crystallites per gram nickel. A ratio of BET SSA to C50 for the nickel particulate form can be at least about 0.1×109 m/gm and preferably at least about 0.4×109 m/gm. Methods of preparation and use are also provided.
Abstract:
Claimed is a process for producing a phosphorus-containing ligand, preferably a diphosphite ligand structure (DLS) such as structure I. The method includes contacting a phosphorochloridite (structure II) with a compound having the structure X—OH (which can be a bisaryl compound), and a tertiary organic amine to provide structure I′ and as preferred embodiment structure I.
Abstract:
Claimed is a process for producing a phosphorus-containing ligand, preferably a diphosphite ligand structure (DLS) such as structure I. The method includes contacting a phosphorochloridite (structure II) with a compound having the structure X—OH (which can be a bisaryl compound), and a tertiary organic amine to provide structure I′ and as preferred embodiment structure I.
Abstract:
The present invention relates to a process for the oxidation of cycloalkanes utilising a supported gold and palladium catalyst and the use of the supported gold and palladium catalyst for the oxidation of cycloalkanes. Also described is a process for the preparation of the supported catalyst.