Abstract:
A system for performing automated cell screening in drug discovery includes an automated microscope (100), a fast autofocus device, and a digital imaging system (500). Processes are implemented in software through which relevant cellular material is segmented and quantified with minimal user interaction. Improvements in the following areas: known methods for image processing are implemented in such a way that automated segmentation is achieved; sets of known measurements (pixel counting, etc.) are implemented as methods which demonstrate aspects of biology in a reliable fashion; components for automated positioning, focusing, imaging and processing of a multiplicity of samples are integrated as systems within which the segmentation and measurement methods may be mounted; and components and methods are adapted into systems which yield more highly automated and more rapid cell screening.
Abstract:
The present invention relates to an apparatus and method for imaging time resolved fluorescence in biochemical and medical samples. In a primary aspect, the device includes a lens of large aperture, a flash lamp in the illumination path, a fast-acting solid state shutter or a gated detector in the emission path, a device for delivering homogenous monochromatic illumination to a plurality of wells distributed within a microwell plate, a digital camera of high quantum efficiency, and a computer. under computer control, the lamp is pulsed at short intervals. The fast-acting emission shutter or gated detector operates to limit exposure of the camera to a period some microseconds after the extinction of each lamp pulse, during which only delayed fluorescence is transmitted to the camera. The invention achieves simultaneous time resolved imaging of a plurality of samples, with high sensitivity and high throughput.
Abstract:
An analytical process is disclosed, for discriminating data acquired from samples with overlapping distributions, and for improving and assessing the statistical validity of hybridization signal in arrays of assays. The process includes method of convolving data into two or more discrete probability density functions representing signal and nonsignal, discrete fluors, or other convolved independent variables. The system uses the probability density functions to assign hybridization signals, objectively, to one of the modeled distributions. Subsequent processes assess variability inherent to the arrays, and use this assessed variation to establish reliability scores and confidence limits for complete hybridization arrays, and for discrete hybridization assays within arrays.
Abstract:
A method and apparatus are disclosed for use in an area digital imaging system for assays to extract targets on a specimen containing an array of targets that may not be arranged in perfect regularity. A matrix is defined of nominal target locations including a probe template of predefined, two-dimensional size and shape at each of a plurality of fixed, predefined grid points on the specimen, and a determination is made of the most probable location of the probe template corresponding to a specific target by sensing both pixel intensity and the spatial distribution of pixel intensities in an image of the specimen at a plurality of locations in the vicinity of a nominal target location.
Abstract:
An analytical process is disclosed, for discriminating data acquired from samples with overlapping distributions, and for improving and assessing the statistical validity of hybridization signal in arrays of assays. The process includes method of convolving data into two or more discrete probability density functions representing signal and nonsignal, discrete fluors, or other convolved independent variables. The system uses the probability density functions to assign hybridisation signals, objectively, to one of the modeled distributions. Subsequent processes assess variability inherent to the arrays, and use this assessed variation to establish reliability scores and confidence limits for complete hybridization arrays, and for discrete hybridization assays within arrays.
Abstract:
The present invention relates to an apparatus and method for imaging time resolved fluorescence in biochemical and medical samples. In a primary aspect, the device includes a lens of large aperture, a flash lamp in the illumination path, a fast-acting solid state shutter or a gated detector in the emission path, a device for delivering homogenous monochromatic illumination to a plurality of wells distributed within a microwell plate, a digital camera of high quantum efficiency, and a computer. under computer control, the lamp is pulsed at short intervals. The fast-acting emission shutter or gated detector operates to limit exposure of the camera to a period some microseconds after the extinction of each lamp pulse, during which only delayed fluorescence is transmitted to the camera. The invention achieves simultaneous time resolved imaging of a plurality of samples, with high sensitivity and high throughput.
Abstract:
A method for improving the reliability and/or accuracy of physical measurements obtained from array hybridization studies performed on an array having a large number of genomic samples uses a small number of replicates insufficient for making precise and valid statistical inferences. This is overcome by estimating an error in measurement of a sample by averaging errors obtained when measuring the large number of samples or a subset of the large number of samples. The estimated sample error is utilized as a standard for accepting or rejecting the measurement of the respective sample. The samples may be independent or dependant in that correlated across two or more conditions.
Abstract:
An electronic imaging system is disclosed, for assessing the intensity of colorimetric, fluorescent or luminescent signal in a matrix consisting of wells, microwells, hybridization dot blots on membranes, gels, or other specimens. The system includes a very sensitive area CCD detector (18), a fast, telecentric lens (22) with epi-illumination (44), a reflective/transmissive illumination system, an illumination wavelength selection device (34), and a light-tight chamber (24). A computer and image analysis software are used to control the hardware, correct and calibrate the images, and detect and quantify targets within the images.