Abstract:
The invention concerns a wavelength tunable semiconductor laser comprising a laser gain section (510) optically coupled to an underlying optical waveguide (520). According to an embodiment of the invention, a first and a second passive microring resonators (530, 560) having a whistle geometry, are arranged on both sides of the laser gain section and evanescently coupled with the optical waveguide (520). Highly reflective broadband mirrors (541, 571) are provided at the free ends of optical waveguide branches (240, 270) tangentially connected to the microring resonators. The first and second passive microrings resonators provide an optical feedback to the laser gain section and allow to select the desired wavelength. The laser structure can be implemented according to a III-V/Si technology.
Abstract:
The invention concerns a wavelength tunable semiconductor laser comprising a laser gain section (510) optically coupled to an underlying optical waveguide (520). According to an embodiment of the invention, a first and a second passive microring resonators (530, 560) having a whistle geometry, are arranged on both sides of the laser gain section and evanescently coupled with the optical waveguide (520). Highly reflective broadband mirrors (541, 571) are provided at the free ends of optical waveguide branches (240,270) tangentially connected to the microring resonators. The first and second passive microrings resonators provide an optical feedback to the laser gain section and allow to select the desired wavelength. The laser structure can be implemented according to a III-V/Si technology.
Abstract:
The present invention provides one or more injection-lockable whistle-geometry semiconductor ring lasers, which may be cascaded, that are integrated on a common silicon-on-insulator (SOI) substrate with a single-frequency semiconductor master laser, wherein the light output from the semiconductor master laser is used to injection-lock the first of the semiconductor ring lasers. The ring lasers can be operated in strongly injection-locked mode, while at least one of them is subjected to direct injection current modulation.
Abstract:
Active multifunctional nanoparticles provide significant enhancement of the efficacy of model therapeutic and gene agents due to increased diffusion and penetration through mucus and biologial barriers under the influence of a magnetic field.