Abstract:
In some embodiments a processor is adapted to store a relationship of power as a function of temperature and voltage, wherein the stored relationship data is to be used for managing power in a system including the processor. Other embodiments are described and claimed.
Abstract:
Techniques for processor loading mechanisms are disclosed. In the illustrative embodiment, a heat sink is in contact with a top surface of a processor, applying a downward force on the processor. A load plate is also in contact with the processor, applying a downward force to the processor as well. The combination of the downward force from the load plate and the heat sink keep the processor in good physical contact with pins of the processor socket. The heat sink has enough force applied to the processor to be in good thermal contact with the processor without applying higher stress to the heat sink. The load plate can apply force to the processor without regard to the thermal characteristics of the load plate. Other embodiments are envisioned and described.
Abstract:
A microelectronic device may include a substrate, a first component, a second component, a slug, a heat spreader, and a heatsink. The substrate may include a plurality of electrically conductive elements. The first component may be coupled to the substrate. The second component may be coupled to the substrate. The slug may be thermally coupled to the second component. The heat spreader may be in contact with the substrate, where the heat spreader may be thermally coupled to the first component. The heatsink may be thermally coupled to the heat spreader and the slug.
Abstract:
In one embodiment, a processor comprises: a first die including at least one core and at least one first die thermal sensor; a second die including at least one memory and at least one second die thermal sensor; and a thermal controller to receive first thermal data from the at least one first die thermal sensor and second thermal data from the at least one second die thermal sensor, calculate a first thermal margin for the first die based at least in part on the first thermal data and a first thermal loadline for the first die and calculate a second thermal margin for the second die based at least in part on the second thermal data and a second thermal loadline for the second die. Other embodiments are described and claimed.
Abstract:
A method for determining whether to perform maintenance for an electronic device includes generating a baseline characterization of thermal performance for a heat-generating component of the electronic device at a baseline date. The method also includes generating an assessment characterization of the thermal performance at an assessment date after the baseline date. The method further includes generating a historical trend that includes the baseline characterization and the assessment characterization. Additionally, the method includes determining whether to perform maintenance for the heat-generating component based on the historical trend and a specified maintenance parameter.
Abstract:
In one embodiment, a processor includes a non-volatile storage to store a plurality of configurations for the processor, the non-volatile storage including a plurality of entries to store configuration information for the processor for one of the plurality of configurations, the configuration information including at least one of a guaranteed operating frequency and a core count, at least one of the entries to store the core count. The processor further includes a power controller to control the processor to operate at one of the plurality of configurations based at least in part on a selected thermal set point of a plurality of thermal set points of the processor, each of the plurality of thermal set points associated with one of the configurations. Other embodiments are described and claimed.
Abstract:
Disclosed herein is a computing device configured to implement thermal throttling of a component of the computing device. The computing device includes an electronic component and a temperature sensor thermally coupled to the electronic component. The computing device also includes a thermal management controller to receive a temperature measurement from the temperature sensor and generate a throttling factor for the electronic component. If the temperature measurement is greater than a specified threshold, the throttling factor is to reduce performance of the electronic component to be at least the performance guarantee for the electronic component.
Abstract:
In an embodiment, a processor includes at least one core and power management logic. The power management logic is to receive temperature data from a plurality of dies within a package that includes the processor, and determine a smallest temperature control margin of a plurality of temperature control margins. Each temperature control margin is to be determined based on a respective thermal control temperature associated with the die and also based on respective temperature data associated with the die. The power management logic is also to generate a thermal report that is to include the smallest temperature control margin, and to store the thermal report. Other embodiments are described and claimed.
Abstract:
In at least some embodiments, an electronic package to maximize heat transfer comprises a plurality of components on a substrate. A stiffener plate is installed over the components. The stiffener plate has openings to expose the components. A plurality of individual integrated heat spreaders are installed within the openings over the components. A first thermal interface material layer (TIM1) is deposited between the components and the plurality of individual integrated heat spreaders. In at least some embodiments, the thickness of the TIM1 is minimized for the components.
Abstract:
Methods and systems may provide for identifying a thermal management setting in a computing system, and comparing the thermal management setting to valid configuration information. In addition, the thermal management setting may be modified if it does not comply with the valid configuration information, wherein the modification can cause the thermal management setting to comply with the valid configuration information. Additionally, a threat risk notification can be initiated in order to notify users of the non-compliance.