Abstract:
Disclosed herein is a computing device configured to implement thermal throttling of a component of the computing device. The computing device includes an electronic component and a temperature sensor thermally coupled to the electronic component. The computing device also includes a thermal management controller to receive a temperature measurement from the temperature sensor and generate a throttling factor for the electronic component. If the temperature measurement is greater than a specified threshold, the throttling factor is to reduce performance of the electronic component to be at least the performance guarantee for the electronic component.
Abstract:
A processor includes a processing core, a L1 cache comprising a first processing core and a first L1 cache comprising a first L1 cache data entry of a plurality of L1 cache data entries to store data. The processor also includes an L2 cache comprising a first L2 cache data entry of a plurality of L2 cache data entries. The first L2 cache data entry corresponds to the first L1 cache data entry and each of the plurality of L2 cache data entries are associated with a corresponding presence bit (pbit) of a plurality of pbits. Each of the plurality of pbits indicates a status of a corresponding one of the plurality of L2 cache data entries. The processor also includes a cache controller, which in response to a first request among a plurality of requests to access the data at the first L1 cache data entry, determines that a copy of the data is stored in the first L2 cache data entry; and retrieves the copy of the data from the L2 cache data entry in view of the status of the pbit.
Abstract:
Instructions and logic provide user-level thread synchronization with MONITOR and MWAIT instructions. One or more model specific registers (MSRs) in a processor may be configured in a first execution state to specify support of a user-level thread synchronization architecture. Embodiments include multiple hardware threads or processing cores, corresponding monitored address state storage to store a last monitored address for each of a plurality of execution threads that issues a MONITOR request, cache memory to record MONITOR requests and associated states for addresses of memory storage locations, and responsive to receipt of an MWAIT request for the address, to record an associated wait-to-trigger state of monitored addresses for execution cores associated with an MWAIT request; wherein the execution core is to transition a requesting thread to an optimized sleep state responsive to the receipt of said MWAIT request when said one or more MSRs are configured in the first execution state.
Abstract:
A secondary jump execution unit (JEU) is incorporated in a micro-processor to operate concurrently with a primary JEU, enabling the execution of simultaneous branch operations with possible detection of multiple branch mispredicts. When branch operations are executed on both JEUs in a same instruction cycle, mispredict processing for the secondary JEU is skidded into the primary JEU's dispatch pipeline such that the branch processing for the secondary JEU occurs after processing of the branch for the primary JEU and while the primary JEU is not processing a branch. Moreover, in cases when a nuke command is also received from a reorder buffer of the processor, the branch processing for the secondary JEU is further delayed to accommodate processing of the nuke on the primary JEU. Further embodiments support the promotion of the secondary JEU to have access to the mispredict mechanisms of the primary JEU in certain circumstances.
Abstract:
A technique to filter bogus instructions from a processor pipeline. At least one embodiment of the invention detects a bogus event, removes only instructions from the processor corresponding to the bogus event without affecting instructions not corresponding to the bogus event.
Abstract:
Instructions and logic provide user-level thread synchronization with MONITOR and MWAIT instructions. One or more model specific registers (MSRs) in a processor may be configured in a first execution state to specify support of a user-level thread synchronization architecture. Embodiments include multiple hardware threads or processing cores, corresponding monitored address state storage to store a last monitored address for each of a plurality of execution threads that issues a MONITOR request, cache memory to record MONITOR requests and associated states for addresses of memory storage locations, and responsive to receipt of an MWAIT request for the address, to record an associated wait-to-trigger state of monitored addresses for execution cores associated with an MWAIT request; wherein the execution core is to transition a requesting thread to an optimized sleep state responsive to the receipt of said MWAIT request when said one or more MSRs are configured in the first execution state.
Abstract:
Disclosed herein is a computing device configured to implement thermal throttling of a component of the computing device. The computing device includes an electronic component and a temperature sensor thermally coupled to the electronic component. The computing device also includes a thermal management controller to receive a temperature measurement from the temperature sensor and generate a throttling factor for the electronic component. If the temperature measurement is greater than a specified threshold, the throttling factor is to reduce performance of the electronic component to be at least the performance guarantee for the electronic component.