Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to pair devices to an in-body network. An example apparatus disclosed herein includes a device capability manager to identify remote sensors associated with a candidate medical device, an encryption engine to provide the candidate medical device with hashing instructions to be applied to input values from selected ones of the remote sensors, a measurement engine to acquire input values from local sensors corresponding to the selected ones of the available remote sensors during a measurement schedule, the encryption engine to apply the hashing instructions to the input values from the local sensors, and a pairing engine to authorize the candidate medical device when an encryption key associated with the remote sensors includes a threshold indication of parity with an encryption key associated with the local sensors.
Abstract:
Disclosed in some examples are methods, systems, and machine readable mediums that provide for the configuration and provisioning of computing devices. In particular, computing devices with limited user interfaces, such as some IoT devices. The functionality of the IoT devices is thus improved to allow for more efficient, more secure, and faster configuration.
Abstract:
Embodiments of a wireless device and methods for rekeying with reduced packet loss in a wireless network are generally described herein. In some embodiments, during rekeying operations a new key for reception may be installed early (i.e., prior to receipt of a rekeying confirmation message). The use of the new key for transmission may be delayed until after receipt of the rekeying confirmation message. The early installation of the new key for reception may allow both the new key and old key to be active at the same time for use decrypting received packets to reduce packet loss during rekeying operations. The rekeying confirmation message may be the fourth message of a four-way handshake for rekeying. In some embodiments, two key identifiers may be alternated between four-way handshakes to prevent deletion of the old key.
Abstract:
Disclosed in some examples are methods, systems, and machine readable mediums that provide for the configuration and provisioning of computing devices. In particular, computing devices with limited user interfaces, such as some IoT devices. The functionality of the IoT devices is thus improved to allow for more efficient, more secure, and faster configuration.
Abstract:
Embodiments are directed to enrollment of an endpoint device in a secure domain. An enrollment request is sent to a delegated registrar (DR) device to initiate a trust-establishment procedure with the DR device to establish initial connectivity and an initial symmetric key to be shared between the DR and the endpoint device. The DR device provides to the endpoint device limited-use credentials for group-access key establishment, and group connectivity parameters for accessing a group administrator (GA) device. The endpoint device and the GA device perform a group-enrollment procedure in which the endpoint device provides the limited-use credentials to the GA device and receives, from the GA device, the group-access key.
Abstract:
In an embodiment, a method includes registering applications and network services for notification of an out-of-band introduction, and using the out-of-band introduction to bootstrap secure in-band provisioning of credentials and policies that are used to control subsequent access and resource sharing on an in-band channel. In another embodiment, an apparatus implements the method.
Abstract:
Disclosed in some examples are methods, systems, and machine readable mediums that provide for the configuration and provisioning of computing devices. In particular, computing devices with limited user interfaces, such as some IoT devices. The functionality of the IoT devices is thus improved to allow for more efficient, more secure, and faster configuration.
Abstract:
Embodiments of a wireless device and methods for rekeying with reduced packet loss in a wireless network are generally described herein. In some embodiments, during rekeying operations a new key for reception may be installed early (i.e., prior to receipt of a rekeying confirmation message). The use of the new key for transmission may be delayed until after receipt of the rekeying confirmation message. The early installation of the new key for reception may allow both the new key and old key to be active at the same time for use decrypting received packets to reduce packet loss during rekeying operations. The rekeying confirmation message may be the fourth message of a four-way handshake for rekeying. In some embodiments, two key identifiers may be alternated between four-way handshakes to prevent deletion of the old key.
Abstract:
Embodiments include a computing processor control flow enforcement system including a processor, a block cipher encryption circuit, and an exclusive-OR (XOR) circuit. The control flow enforcement system uses a block cipher encryption to authenticate a return address when returning from a call or interrupt. The block cipher encryption circuit executes a block cipher encryption on a first number including an identifier to produce a first encrypted result and executes a block cipher encryption on a second number including a return address and a stack location pointer to produce a second encrypted result. The XOR circuit performs an XOR operation on the first encrypted result and the second encrypted result to produce a message authentication code tag.
Abstract:
Disclosed in some examples are methods, systems, and machine readable mediums that provide for the configuration and provisioning of computing devices. In particular, computing devices with limited user interfaces, such as some IoT devices. The functionality of the IoT devices is thus improved to allow for more efficient, more secure, and faster configuration.