Abstract:
A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
Abstract:
Methods, apparatus, instructions and logic are disclosed providing double rounded combined floating-point multiply and add functionality as scalar or vector SIMD instructions or as fused micro-operations. Embodiments include detecting floating-point (FP) multiplication operations and subsequent FP operations specifying as source operands results of the FP multiplications. The FP multiplications and the subsequent FP operations are encoded as combined FP operations including rounding of the results of FP multiplication followed by the subsequent FP operations. The encoding of said combined FP operations may be stored and executed as part of an executable thread portion using fused-multiply-add hardware that includes overflow detection for the product of FP multipliers, first and second FP adders to add third operand addend mantissas and the products of the FP multipliers with different rounding inputs based on overflow, or no overflow, in the products of the FP multiplier. Final results are selected respectively using overflow detection.
Abstract:
Methods and apparatus for extending OpenvSwitch (OVS) megaflow offloads to hardware to address hardware pipeline limitations. Under a method implemented on a compute platform including a Network Interface Controller (NIC) having one or more ports and running software including OVS software and a Linux operating system having a kernel including a TC-flower module and a NIC driver a new megaflow is created with a mask in the OVS software employing a subset of microflow fields for a packet. The microflow fields and the megaflow mask is sent to the NIC driver. A new megaflow is implemented in the NIC driver employing a subset of the microflow fields and the NIC driver creates a new hardware flow on the NIC employing a packet match scheme using all the microflow fields. The NIC also programs a NIC hardware pipeline with the new hardware flow using a match scheme that may depend on the available hardware resources, such as the size of a TCAM.
Abstract:
Examples described herein relate to one or more processors, when operational, to execute instructions stored in memory device, to cause performance of: execute a driver that is to: negotiate capabilities of hardware with a control plane for a virtualized execution environment and limit capabilities of the hardware available to the virtualized execution environment based on a service level agreement (SLA) associated with the virtualized execution environment. In some examples, the driver is to advertise hardware capabilities requested by the virtualized execution environment. In some examples, the control plane is to set capabilities of a hardware available to the virtualized execution environment based on the SLA.
Abstract:
A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
Abstract:
Examples include techniques for a field programmable gate array (FPGA) to perform one or more functions for an application specific integrated circuit (ASIC). Example techniques include communication between the ASIC and the FPGA via a sideband communication link to enable the ASIC to indicate to the FPGA a need for the FPGA to perform a function to fulfill a request received by the ASIC.
Abstract:
Methods, apparatus, instructions and logic are disclosed providing double rounded combined floating-point multiply and add functionality as scalar or vector SIMD instructions or as fused micro-operations. Embodiments include detecting floating-point (FP) multiplication operations and subsequent FP operations specifying as source operands results of the FP multiplications. The FP multiplications and the subsequent FP operations are encoded as combined FP operations including rounding of the results of FP multiplication followed by the subsequent FP operations. The encoding of said combined FP operations may be stored and executed as part of an executable thread portion using fused-multiply-add hardware that includes overflow detection for the product of FP multipliers, first and second FP adders to add third operand addend mantissas and the products of the FP multipliers with different rounding inputs based on overflow, or no overflow, in the products of the FP multiplier. Final results are selected respectively using overflow detection.
Abstract:
An error handling method includes identifying a code region eligible for cumulative multiply add (CMA) optimization and translating code region instructions into interpreter code instructions, which may include translating sequences of multiply add instructions in the code region instructions into fusion code including CMA instructions. Floating point (FP) exceptions generated by the fusion code may be monitored and at least a portion of the code region instructions may be re-translated to eliminate some or all fusion code if CMA intermediate rounding exceptions exceed a threshold.
Abstract:
A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
Abstract:
A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.