-
公开(公告)号:US20250104179A1
公开(公告)日:2025-03-27
申请号:US18905803
申请日:2024-10-03
Applicant: Intel Corporation
Inventor: Altug Koker , Lance Cheney , Eric Finley , Varghese George , Sanjeev Jahagirdar , Josh Mastronarde , Naveen Matam , Iqbal Rajwani , Lakshminarayanan Striramassarma , Melaku Teshome , Vikranth Vemulapalli , Binoj Xavier
Abstract: A disaggregated processor package can be configured to accept interchangeable chiplets. Interchangeability is enabled by specifying a standard physical interconnect for chiplets that can enable the chiplet to interface with a fabric or bridge interconnect. Chiplets from different IP designers can conform to the common interconnect, enabling such chiplets to be interchangeable during assembly. The fabric and bridge interconnects logic on the chiplet can then be configured to confirm with the actual interconnect layout of the on-board logic of the chiplet. Additionally, data from chiplets can be transmitted across an inter-chiplet fabric using encapsulation, such that the actual data being transferred is opaque to the fabric, further enable interchangeability of the individual chiplets. With such an interchangeable design, cache or DRAM memory can be inserted into memory chiplet slots, while compute or graphics chiplets with a higher or lower core count can be inserted into logic chiplet slots.
-
公开(公告)号:US12229867B2
公开(公告)日:2025-02-18
申请号:US18310015
申请日:2023-05-01
Applicant: Intel Corporation
Inventor: Hugues Labbe , Darrel Palke , Sherine Abdelhak , Jill Boyce , Varghese George , Scott Janus , Adam Lake , Zhijun Lei , Zhengmin Li , Mike MacPherson , Carl Marshall , Selvakumar Panneer , Prasoonkumar Surti , Karthik Veeramani , Deepak Vembar , Vallabhajosyula Srinivasa Somayazulu
Abstract: One embodiment provides a graphics processor comprising a block of execution resources, a cache memory, a cache memory prefetcher, and circuitry including a programmable neural network unit, the programmable neural network unit comprising a network hardware block including circuitry to perform neural network operations and activation operations for a layer of a neural network, the programmable neural network unit addressable by cores within the block of graphics cores and the neural network hardware block configured to perform operations associated with a neural network configured to determine a prefetch pattern for the cache memory prefetcher.
-
公开(公告)号:US12124383B2
公开(公告)日:2024-10-22
申请号:US17862739
申请日:2022-07-12
Applicant: Intel Corporation
Inventor: Altug Koker , Joydeep Ray , Elmoustapha Ould-Ahmed-Vall , Abhishek Appu , Aravindh Anantaraman , Valentin Andrei , Durgaprasad Bilagi , Varghese George , Brent Insko , Sanjeev Jahagirdar , Scott Janus , Pattabhiraman K , SungYe Kim , Subramaniam Maiyuran , Vasanth Ranganathan , Lakshminarayanan Striramassarma , Xinmin Tian
IPC: G06F12/00 , G06F12/0875 , G06F12/0891 , G06F12/123 , G06T1/60
CPC classification number: G06F12/123 , G06F12/0875 , G06F12/0891 , G06T1/60 , G06F2212/302
Abstract: Systems and methods for improving cache efficiency and utilization are disclosed. In one embodiment, a graphics processor includes processing resources to perform graphics operations and a cache controller of a cache memory that is coupled to the processing resources. The cache controller is configured to set an initial aging policy using an aging field based on age of cache lines within the cache memory and to determine whether a hint or an instruction to indicate a level of aging has been received. In one embodiment, the cache memory configured to be partitioned into multiple cache regions, wherein the multiple cache regions include a first cache region having a cache eviction policy with a configurable level of data persistence.
-
公开(公告)号:US12093210B2
公开(公告)日:2024-09-17
申请号:US17430574
申请日:2020-03-14
Applicant: Intel Corporation
Inventor: Abhishek R. Appu , Altug Koker , Aravindh Anantaraman , Elmoustapha Ould-Ahmed-Vall , Joydeep Ray , Mike Macpherson , Valentin Andrei , Nicolas Galoppo Von Borries , Varghese George , Subramaniam Maiyuran , Vasanth Ranganathan , Jayakrishna P S , K Pattabhiraman , Sudhakar Kamma
IPC: G06F15/78 , G06F7/544 , G06F7/575 , G06F7/58 , G06F9/30 , G06F9/38 , G06F9/50 , G06F12/02 , G06F12/06 , G06F12/0802 , G06F12/0804 , G06F12/0811 , G06F12/0862 , G06F12/0866 , G06F12/0871 , G06F12/0875 , G06F12/0882 , G06F12/0888 , G06F12/0891 , G06F12/0893 , G06F12/0895 , G06F12/0897 , G06F12/1009 , G06F12/128 , G06F15/80 , G06F17/16 , G06F17/18 , G06T1/20 , G06T1/60 , H03M7/46 , G06N3/08 , G06T15/06
CPC classification number: G06F15/7839 , G06F7/5443 , G06F7/575 , G06F7/588 , G06F9/3001 , G06F9/30014 , G06F9/30036 , G06F9/3004 , G06F9/30043 , G06F9/30047 , G06F9/30065 , G06F9/30079 , G06F9/3887 , G06F9/5011 , G06F9/5077 , G06F12/0215 , G06F12/0238 , G06F12/0246 , G06F12/0607 , G06F12/0802 , G06F12/0804 , G06F12/0811 , G06F12/0862 , G06F12/0866 , G06F12/0871 , G06F12/0875 , G06F12/0882 , G06F12/0888 , G06F12/0891 , G06F12/0893 , G06F12/0895 , G06F12/0897 , G06F12/1009 , G06F12/128 , G06F15/8046 , G06F17/16 , G06F17/18 , G06T1/20 , G06T1/60 , H03M7/46 , G06F9/3802 , G06F9/3818 , G06F9/3867 , G06F2212/1008 , G06F2212/1021 , G06F2212/1044 , G06F2212/302 , G06F2212/401 , G06F2212/455 , G06F2212/60 , G06N3/08 , G06T15/06
Abstract: Methods and apparatus relating to techniques for data compression. In an example, an apparatus comprises a processor receive a data compression instruction for a memory segment; and in response to the data compression instruction, compress a sequence of identical memory values in response to a determination that the sequence of identical memory values has a length which exceeds a threshold. Other embodiments are also disclosed and claimed.
-
公开(公告)号:US20240086356A1
公开(公告)日:2024-03-14
申请号:US18491474
申请日:2023-10-20
Applicant: Intel Corporation
Inventor: Joydeep Ray , Altug Koker , Varghese George , Mike Macpherson , Aravindh Anantaraman , Abhishek R. Appu , Elmoustapha Ould-Ahmed-Vall , Nicolas Galoppo von Borries , Ben J. Ashbaugh
IPC: G06F15/78 , G06F7/544 , G06F7/575 , G06F7/58 , G06F9/30 , G06F9/38 , G06F9/50 , G06F12/02 , G06F12/06 , G06F12/0802 , G06F12/0804 , G06F12/0811 , G06F12/0862 , G06F12/0866 , G06F12/0871 , G06F12/0875 , G06F12/0882 , G06F12/0888 , G06F12/0891 , G06F12/0893 , G06F12/0895 , G06F12/0897 , G06F12/1009 , G06F12/128 , G06F15/80 , G06F17/16 , G06F17/18 , G06T1/20 , G06T1/60 , H03M7/46
CPC classification number: G06F15/7839 , G06F7/5443 , G06F7/575 , G06F7/588 , G06F9/3001 , G06F9/30014 , G06F9/30036 , G06F9/3004 , G06F9/30043 , G06F9/30047 , G06F9/30065 , G06F9/30079 , G06F9/3887 , G06F9/5011 , G06F9/5077 , G06F12/0215 , G06F12/0238 , G06F12/0246 , G06F12/0607 , G06F12/0802 , G06F12/0804 , G06F12/0811 , G06F12/0862 , G06F12/0866 , G06F12/0871 , G06F12/0875 , G06F12/0882 , G06F12/0888 , G06F12/0891 , G06F12/0893 , G06F12/0895 , G06F12/0897 , G06F12/1009 , G06F12/128 , G06F15/8046 , G06F17/16 , G06F17/18 , G06T1/20 , G06T1/60 , H03M7/46 , G06T15/06
Abstract: Embodiments described herein provide techniques to facilitate instruction-based control of memory attributes. One embodiment provides a graphics processor comprising a processing resource, a memory device, a cache coupled with the processing resources and the memory, and circuitry to process a memory access message received from the processing resource. The memory access message enables access to data of the memory device. To process the memory access message, the circuitry is configured to determine one or more cache attributes that indicate whether the data should be read from or stored the cache. The cache attributes may be provided by the memory access message or stored in state data associated with the data to be accessed by the access message.
-
公开(公告)号:US20240012767A1
公开(公告)日:2024-01-11
申请号:US18358550
申请日:2023-07-25
Applicant: Intel Corporation
Inventor: Joydeep Ray , Altug Koker , Elmoustapha Ould-Ahmed-Vall , Michael Macpherson , Aravindh V. Anantaraman , Vasanth Ranganathan , Lakshminarayanan Striramassarma , Varghese George , Abhishek Appu , Prasoonkumar Surti
CPC classification number: G06T15/005 , G06F9/3013 , G06F9/38873
Abstract: An apparatus to facilitate efficient data sharing for graphics data processing operations is disclosed. The apparatus includes a processing resource to generate a stream of instructions, an L1 cache communicably coupled to the processing resource and comprising an on-page detector circuit to determine that a set of memory requests in the stream of instructions access a same memory page; and set a marker in a first request of the set of memory requests; and arbitration circuitry communicably coupled to the L1 cache, the arbitration circuitry to route the set of memory requests to memory comprising the memory page and to, in response to receiving the first request with the marker set, remain with the processing resource to process the set of memory requests.
-
公开(公告)号:US20230351543A1
公开(公告)日:2023-11-02
申请号:US18310688
申请日:2023-05-02
Applicant: Intel Corporation
Inventor: Joydeep Ray , Scott Janus , Varghese George , Subramaniam Maiyuran , Altug Koker , Abhishek Appu , Prasoonkumar Surti , Vasanth Ranganathan , Valentin Andrei , Ashutosh Garg , Yoav Harel , Arthur Hunter, JR. , SungYe Kim , Mike Macpherson , Elmoustapha Ould-Ahmed-Vall , William Sadler , Lakshminarayanan Striramassarma , Vikranth Vemulapalli
IPC: G06N3/084 , G06F15/80 , G06F17/16 , G06N3/048 , G06T1/20 , G06F9/50 , G06F12/0806 , G06F7/544 , G06N3/08
CPC classification number: G06T1/20 , G06F7/5443 , G06F9/5027 , G06F12/0806 , G06F15/8046 , G06F17/16 , G06N3/048 , G06N3/08 , G06N3/084
Abstract: Embodiments described herein include, software, firmware, and hardware logic that provides techniques to perform arithmetic on sparse data via a systolic processing unit. Embodiment described herein provided techniques to detect zero value elements within a vector or a set of packed data elements output by a processing resource and generate metadata to indicate a location of the zero value elements within the plurality of data elements.
-
8.
公开(公告)号:US20230195685A1
公开(公告)日:2023-06-22
申请号:US18170900
申请日:2023-02-17
Applicant: Intel Corporation
Inventor: Subramaniam Maiyuran , Shubra Marwaha , Ashutosh Garg , Supratim Pal , Jorge Parra , Chandra Gurram , Varghese George , Darin Starkey , Guei-Yuan Lueh
IPC: G06F15/78 , G06F9/30 , G06F12/128 , G06F17/16 , G06F12/0811 , G06F12/02 , G06F12/0866 , G06F7/544 , G06F9/50 , G06F17/18 , G06F9/38 , G06F12/0891 , G06F12/06 , G06F12/0888 , G06F12/0802 , G06T1/60 , G06F12/0871 , G06T1/20 , H03M7/46 , G06F12/0875 , G06F12/0862 , G06F15/80 , G06F12/0897 , G06F12/0893 , G06F12/0804 , G06F12/0882 , G06F7/575 , G06F12/1009 , G06F12/0895 , G06F7/58 , G06T15/06 , G06N3/08
CPC classification number: G06F15/7839 , G06F9/30043 , G06F12/128 , G06F17/16 , G06F12/0811 , G06F12/0238 , G06F12/0866 , G06F9/30014 , G06F7/5443 , G06F9/5077 , G06F12/0246 , G06F17/18 , G06F9/3887 , G06F12/0891 , G06F12/0607 , G06F12/0888 , G06F12/0802 , G06T1/60 , G06F9/30079 , G06F12/0871 , G06F9/30036 , G06T1/20 , H03M7/46 , G06F12/0215 , G06F12/0875 , G06F12/0862 , G06F15/8046 , G06F9/30047 , G06F9/30065 , G06F12/0897 , G06F9/5011 , G06F12/0893 , G06F12/0804 , G06F12/0882 , G06F9/3001 , G06F7/575 , G06F12/1009 , G06F9/3004 , G06F12/0895 , G06F7/588 , G06F2212/401 , G06F2212/1044 , G06F9/3867 , G06F9/3818 , G06F9/3802 , G06F2212/455 , G06F2212/1021 , G06F2212/60 , G06F2212/1008 , G06T15/06 , G06N3/08 , G06F2212/302
Abstract: Described herein is a graphics processing unit (GPU) configured to receive an instruction having multiple operands, where the instruction is a single instruction multiple data (SIMD) instruction configured to use a bfloat16 (BF16) number format and the BF16 number format is a sixteen-bit floating point format having an eight-bit exponent. The GPU can process the instruction using the multiple operands, where to process the instruction includes to perform a multiply operation, perform an addition to a result of the multiply operation, and apply a rectified linear unit function to a result of the addition.
-
公开(公告)号:US11676239B2
公开(公告)日:2023-06-13
申请号:US17303654
申请日:2021-06-03
Applicant: Intel Corporation
Inventor: Joydeep Ray , Scott Janus , Varghese George , Subramaniam Maiyuran , Altug Koker , Abhishek Appu , Prasoonkumar Surti , Vasanth Ranganathan , Andrei Valentin , Ashutosh Garg , Yoav Harel , Arthur Hunter, Jr. , SungYe Kim , Mike Macpherson , Elmoustapha Ould-Ahmed-Vall , William Sadler , Lakshminarayanan Striramassarma , Vikranth Vemulapalli
IPC: G06T1/20 , G06F9/50 , G06F12/0806 , G06F15/80 , G06F17/16 , G06F7/544 , G06N3/04 , G06N3/08 , G06N3/084 , G06N3/048
CPC classification number: G06T1/20 , G06F7/5443 , G06F9/5027 , G06F12/0806 , G06F15/8046 , G06F17/16 , G06N3/048 , G06N3/08 , G06N3/084
Abstract: Embodiments described herein include, software, firmware, and hardware logic that provides techniques to perform arithmetic on sparse data via a systolic processing unit. Embodiment described herein provided techniques to skip computational operations for zero filled matrices and sub-matrices. Embodiments additionally provide techniques to maintain data compression through to a processing unit. Embodiments additionally provide an architecture for a sparse aware logic unit.
-
公开(公告)号:US11640297B2
公开(公告)日:2023-05-02
申请号:US17304153
申请日:2021-06-15
Applicant: Intel Corporation
Inventor: Subramaniam Maiyuran , Guei-Yuan Lueh , Supratim Pal , Ashutosh Garg , Chandra S. Gurram , Jorge E. Parra , Junjie Gu , Konrad Trifunovic , Hong Bin Liao , Mike B. MacPherson , Shubh B. Shah , Shubra Marwaha , Stephen Junkins , Timothy R. Bauer , Varghese George , Weiyu Chen
Abstract: Embodiments described herein provided for an instruction and associated logic to enable GPGPU program code to access special purpose hardware logic to accelerate dot product operations. One embodiment provides for a graphics processing unit comprising a fetch unit to fetch an instruction for execution and a decode unit to decode the instruction into a decoded instruction. The decoded instruction is a matrix instruction to cause the graphics processing unit to perform a parallel dot product operation. The GPGPU also includes systolic dot product circuitry to execute the decoded instruction across one or more SIMD lanes using multiple systolic layers, wherein to execute the decoded instruction, a dot product computed at a first systolic layer is to be output to a second systolic layer, wherein each systolic layer includes one or more sets of interconnected multipliers and adders, each set of multipliers and adders to generate a dot product.
-
-
-
-
-
-
-
-
-