Abstract:
Traffic engineering functionalities are described in a heterogeneous network that includes an anchor base station serving a cellular macro cell and booster base stations serving mmWave enabled small cells. The described functionalities are designed to cope with dynamic changes in the heterogeneous environment such as loss of a backhaul link between the anchor base station and the booster base station, loss of a link between a terminal and one of the base stations, and loss of beam forming in a mmWave link between the terminal and the booster base station.
Abstract:
An Evolved NodeB (eNodeB) operable to perform load balancing in a cellular network comprised of a plurality of eNodeBs, comprises a transmit circuitry configured to transmit a load information and a reference signal that identifies the eNodeB, to a user equipment (UE) having a reception beam directed to the eNodeB, in a coverage area of the eNodeB. Further, the eNodeB comprises a receive circuitry configured to receive a plurality of evaluation metrics from the UE, wherein each of the plurality of evaluation metrics is determined based on a load information and a reference signal of a respective one of the plurality of eNodeBs. Furthermore, the eNodeB comprises a processor circuitry configured to determine a reception beam direction for the UE based on the plurality of evaluation metrics. In addition, the transmit circuitry is configured to transmit a command signal with information on the determined reception beam direction to the UE.
Abstract:
An eNodeB (eNB), user equipment (UE) and method of providing a dynamically determined guard interval (GI) sequence are generally described. Uplink and downlink TDD subframes may each contain a block having a symbol and a GI sequence. The GI sequences may differ or be the same between the different subframes and the GI sequences may depend on an estimation of channel delay spread, a cell identifier (ID) of a cell to which the UE is configured to communicate, and a UE ID. The uplink or downlink subframe may comprise a guard time. A last block of the downlink subframe or first block of the uplink subframe may contain the GI sequence and the guard time and a first block of the uplink subframe or last block of the downlink subframe respectively may contain an additional GI sequence to maintain cyclicity.
Abstract:
Disclosed in some examples are systems, machine-readable media, methods, and cellular wireless devices which implement a Listen Before Talk (LBT) access scheme for a device operating according to a cellular wireless protocol in an unlicensed channel. A cellular wireless device may utilize the cellular wireless protocol in the unlicensed channel after the LBT access scheme has determined that a channel (a defined range of frequencies) in the unlicensed channel is idle for a particular period of time.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for establishing a direct connection between two UEs. Each UE may be provisioned with a temporary identifier by a server of a wireless network of the UE. The UEs may then be configured to broadcast the temporary IDs in radio signals over radio resources that are separate from the radio resources of the network. The temporary IDs may not contain identifying information of the broadcasting UE that is interpretable without receiving further information from the network.
Abstract:
Disclosed herein are apparatuses, systems, and methods using or implementing dynamic resource allocation (DRA) of resources for machine-type communication (MTC), as a secondary partition within a system bandwidth. Allocations outside the secondary partition are configured as a primary partition for other than MTC. Apparatuses may perform MTC communications within the secondary partition when DRA configuration information includes allocation information for the secondary partition and the apparatus is configured for MTC. Otherwise, if the apparatus is other than MTC, the apparatus may refrain from performing communications in the secondary partition. Other embodiments are described.
Abstract:
A User Equipment (UE) device operates to directly determine a target small cell for access or handover with the assistance of a macro cell network. The UE directly generates the connection and selects which small cell to access from among a subset of small cells chosen of a set of candidate small cells. The UE is provided dedicated assistance information from the evolved node B (eNB) or macro network device. The dedicated assistance information enables the UE to measure data from the candidate small cells within a heterogeneous network environment. The UE shares the measured data and connects directly to the selected small cell for an access or handover operation.
Abstract:
Embodiments of an Evolved Node-B (eNB) and methods for HARQ transmission are disclosed herein. The eNB may transmit, to a reduced-latency User Equipment (UE), an initial HARQ block and a diversity HARQ block for a reduced-latency data block. A sub-frame spacing between the transmissions of the HARQ blocks may be less than a sub-frame spacing used for transmissions of HARQ blocks to UEs not operating as reduced-latency UEs. The HARQ blocks for the reduced-latency data block may be transmitted in a reduced-latency region of time and frequency resources reserved for HARQ processes with reduced-latency UEs. In addition, HARQ blocks may be transmitted in time and frequency resources exclusive of the reduced-latency region to other UEs not operating as reduced-latency UEs.
Abstract:
Embodiments of an Evolved Node-B (eNB) and methods for HARQ transmission are disclosed herein. The eNB may transmit, to a reduced-latency User Equipment (UE), an initial HARQ block and a diversity HARQ block for a reduced-latency data block. A sub-frame spacing between the transmissions of the HARQ blocks may be less than a sub-frame spacing used for transmissions of HARQ blocks to UEs not operating as reduced-latency UEs. The HARQ blocks for the reduced-latency data block may be transmitted in a reduced-latency region of time and frequency resources reserved for HARQ processes with reduced-latency UEs. In addition, HARQ blocks may be transmitted in time and frequency resources exclusive of the reduced-latency region to other UEs not operating as reduced-latency UEs.
Abstract:
A user equipment (UE) is configured to scan for device-to-device synchronization sources based on scanning configuration information. The UE is configured to report detection of a device-to-device synchronization source to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB) in response to determining that the device-to-device synchronization source meets one or more reporting requirements of the scanning configuration information. The UE is configured to receive a communication from the eNB enabling the UE as a synchronization source and transmit signals to provide a synchronization reference to one or more in-range UEs including the device-to-device synchronization source.