Abstract:
The present invention provides a thermal radiation light source that allows a wider range of material choices than those of conventional techniques, so that light having a desired peak wavelength can easily be obtained. A thermal radiation light source 10 includes a thermo-optical converter made of an optical structure in which a refractive index distribution is formed in a member 11 made of an intrinsic semiconductor so as to resonate with light of a shorter wavelength than a wavelength corresponding to a bandgap of the intrinsic semiconductor. When heat is externally supplied to the thermo-optical converter, light having a spectrum in a band of shorter wavelengths than a cutoff wavelength is produced by interband absorption in the intrinsic semiconductor, and light of a resonant wavelength λr in the wavelength band, the light causing resonance in the optical structure, is selectively intensified and emitted as thermal radiation light. In the present invention, an intrinsic semiconductor that provides a wide range of material choices is used, so that a thermal radiation light source that produces narrow-band light having a desired peak wavelength can easily be obtained.
Abstract:
A thermal emission source capable of switching the intensity of light at a high response speed similarly to a photoelectric conversion element. A thermal emission source includes: a two-dimensional photonic crystal including a slab in which an n-layer made of an n-type semiconductor, a quantum well structure layer having a quantum well structure, and a p-layer made of a p-type semiconductor are stacked in the mentioned order in the thickness direction, wherein modified refractive index areas (air holes) whose refractive index differs from the refractive indices of the n-layer, the p-layer and the quantum well structure layer are cyclically arranged in the slab so as to resonate with a specific wavelength of light corresponding to a transition energy between the subbands in a quantum well in the quantum well structure layer; and a p-type electrode and an n-type electrode for applying, to the slab, a voltage which is negative on the side of the p-layer and positive on the side of the n-layer.
Abstract:
A thermal emission source that allows a wider range of material choices than those of conventional techniques, so that light having a desired peak wavelength can easily be obtained. A thermal emission source includes a thermo-optical converter composed of an optical structure in which a refractive index distribution is formed in a member made of an intrinsic semiconductor so as to resonate with light of a shorter wavelength than a wavelength corresponding to a bandgap of the intrinsic semiconductor. When heat is externally supplied to the thermo-optical converter, light having a spectrum in a band of shorter wavelengths than a cutoff wavelength is produced by interband absorption in the intrinsic semiconductor, and light of a resonant wavelength λr in the wavelength band, the light causing resonance in the optical structure, is selectively intensified and emitted as thermal emission.