Abstract:
To provide an ultrasonic flaw detection method, an ultrasonic flaw detection apparatus, and a pipe manufacturing method that can detect even dent flaws or shallow flaws in a lapped form arisen on inner surfaces of metallic pipes such as steel pipes, included are a wave memory 11 that acquires and holds waveform data of an echo signal when an ultrasonic probe 2, generating ultrasonic signals toward an inner surface B of a steel pipe 1, and the steel pipe 1 are moved relative to each other; a signal analyzing unit 12 that calculates a path length up to receiving an echo signal from the inner surface B and a change rate of the path length based on the waveform data held; and a flaw detector 13 that detects a flaw BW on the inner surface B based on the path length and the change rate of the path length.
Abstract:
A rolled steel sheet metal structure evaluation device according to the present invention comprises: a magnetic characteristic measurement unit that measures a magnetic characteristic in at least two different magnetization directions at an evaluation target point on a surface of a rolled steel sheet, by applying a magnetic field in one direction on the surface of the rolled steel sheet and performing, in at least two different magnetization directions, a process to measure the magnetic characteristic at the evaluation target point; and a determination unit that determines the metal structure of the evaluation target point using the magnetic characteristic that was measured by the magnetic characteristic measurement unit.
Abstract:
This ultrasonic flaw detection device (1) is provided with: a sensor head (11) for ultrasonic flaw detection that is disposed downstream of a seam detection unit (13); a seam position calculation unit (14a) that calculates a seam position and bead cutting position of a seam-welded pipe (P) using a thermal image of a weld seam portion captured by the seam detection unit (13); a bead cut band detection unit (15) that is disposed just before or just after the sensor head (11) for ultrasonic flaw detection and detects a bead cut band of the seam-welded pipe (P); a bead cutting position calculation unit (14c) that calculates the bead cutting position of the seam-welded pipe (P) on the basis of the bead cut band detected by the bead cut band detection unit (15); and a following movement amount calculation unit (14d) that calculates the amount of following movement of the sensor head (11) for ultrasonic flaw detection using the seam position and bead cutting position calculated by the seam position calculation unit (14a) and the bead cutting position calculated by the bead cutting position calculation unit (14c).
Abstract:
Método de detección de defectos por ultrasonidos para detectar un defecto (BW) en una superficie (B) interna de una tubería (1) metálica usando ondas de ultrasonidos, comprendiendo el método de detección de defectos por ultrasonidos: una etapa de contención de forma de onda (S101) para adquirir y contener datos de forma de onda de una señal de eco cuando una sonda (2) de ultrasonidos que genera señales de ultrasonidos hacia la superficie (B) interna y la tubería (1) metálica se mueven una con respecto a la otra; una etapa de análisis de señal (S102, S103) para calcular una longitud de trayectoria hasta recibir una señal de eco a partir de la superficie (B) interna y una tasa de cambio de la longitud de trayectoria basándose en los datos de forma de onda contenidos, en el que la longitud de trayectoria de haz se obtiene desde un momento en el que se recibe un eco de superficie reflejado a partir de una superficie (S) externa de dicha tubería (1) metálica hasta que se recibe un eco de fondo reflejado a partir de dicha superficie (B) interna, y en el que la tasa de cambio de la longitud de trayectoria es con respecto a una cantidad de dicho movimiento relativo de dicha sonda (2) de ultrasonidos y dicha tubería (1) metálica; y una etapa de detección de defectos (S105) para detectar un defecto (BW) en la superficie (B) interna basándose en la longitud de trayectoria y la tasa de cambio de la longitud de trayectoria, en el que la etapa de análisis de señal calcula además una altura de la señal de eco a partir de la superficie (B) interna basándose en los datos de forma de onda contenidos, y en el que la etapa de detección de defectos (S105) determina que está presente un defecto (BW) en una porción que cumple una primera condición en la que la longitud de trayectoria es igual a, o menor que, un umbral (DB) de longitud de trayectoria dado, con respecto a una porción que no cumple la primera condición, la etapa de detección de defectos determina que está presente un defecto en la porción que no cumple la primera condición cuando la porción que no cumple la primera condición cumple una segunda condición en la que la tasa de cambio de la longitud de trayectoria es igual a, o mayor que, un umbral (DC2) de tasa de cambio de longitud de trayectoria dado y la altura de la señal de eco a partir de la superficie interna dentro de un intervalo (W) de búsqueda preestablecido con respecto a una posición de la tasa de cambio de la longitud de trayectoria que es igual al, o mayor que el, umbral (DC2) de tasa de cambio de longitud de trayectoria dado como posición de referencia es igual a, o menor que, un umbral (DA, S407) de altura dado, y la etapa de detección de defectos (BW) determina que no está presente ningún defecto (BW) en una porción que no cumple ninguna de las condiciones primera y segunda.
Abstract:
An ultrasonic flaw detection apparatus 1 includes: a ultrasonic flaw detection sensor head 11 installed downstream from a seam detection unit 13; a seam position calculation unit 14a that calculates a seam position and a bead cutting position of an electric resistance welded pipe P by using a thermal image of a welded seam portion captured by the seam detection unit 13; a bead cutting band detection unit 15 that is installed immediately before or immediately after the ultrasonic flaw detection sensor head 11 and that detects a bead cutting band of the electric resistance welded pipe P; a bead cutting position calculation unit 14c that calculates, based on the bead cutting band detected by the bead cutting band detection unit 15, a bead cutting position of the electric resistance welded pipe P; and a tracking movement amount calculation unit 14d that calculates a tracking movement amount of the ultrasonic flaw detection sensor head 11 by using the seam position and bead cutting position calculated by the seam position calculation unit 14a and the bead cutting position calculated by the bead cutting position calculation unit 14c.
Abstract:
A resistance welded steel pipe having excellent resistance to leakage under internal pressure and excellent electric resistance weld zone toughness is provided. A hot-rolled steel sheet having a composition containing, in mass %, C: 0.025 to 0.168%, Si: 0.10 to 0.30%, Mn: 0.60 to 1.90%, and one or at least two selected from Ca, Nb, V, and Ti such that Pcm is 0.20 or less is subjected to continuous cold roll forming to obtain a pipe-shaped body. In this case, tapered grooves are formed in the lateral end surface of the steel sheet such that the ratio of the tapered portions to the wall thickness of the steel sheet is 10 to 80%. Then the end surfaces of the pipe-shaped body are butted against each other and subjected to electric resistance welding to thereby obtain a pipe body. Ultrasonic waves are transmitted toward the electric resistance weld surface such that a beam width is within the range of 0.1 to 4.0 mm, and the reflected waves are used for ultrasonic flaw detection using an ultrasonic flaw detector that uses array probes to thereby inspect the soundness of the electric resistance weld zone. After or before the inspection, the electric resistance weld zone is subjected to seam annealing treatment in which the electric resistance weld zone is heated to 850 to 1,150°C and cooled at a cooling rate of 20 to 200°C/s. In the electric resistance
Abstract:
A microstructure form of a welding area is quickly and accurately (or clearly) imaged in a nondestructive inspection. Specifically, while a cross section of a test object S orthogonal to a welding direction is being scanned with an ultrasonic beam B, a reflected signal from the inside of the test object is received. On the basis of the received reflected signal, the scanned cross section is imaged to inspect a microstructure of a welding area 2. In imaging the welding area, a reflected wave from the microstructure of the welding area is enhanced by subtracting a moving average waveform Ra at an average score m to remove a slowly varying component of the received signal, extracting the reflected signal from the microstructure of the welding area, and amplifying only the extracted reflected signal. Alternatively, a reflected wave from the microstructure of the welding area is enhanced by scanning a cross section of the test object orthogonal to the welding direction with a focused ultrasonic beam at a plurality of different positions in the welding direction, imaging the scanned cross sections on the basis of the resulting ultrasonic received signals, superimposing a plurality of images obtained by scanning at the plurality of positions in the welding direction, and retaining a maximal value of superimposed pixels.
Abstract:
An ultrasonic flaw detection apparatus 1 includes: an ultrasonic flaw detection sensor head 11 installed downstream from a seam detection unit 13; a seam position calculation unit 14a that calculates a seam position and a bead cutting position of an electric resistance welded pipe P by using a thermal image of a welded seam portion captured by the seam detection unit 13; a bead cutting band detection unit 15 that is installed immediately before or immediately after the ultrasonic flaw detection sensor head 11 and that detects a bead cutting band of the electric resistance welded pipe P; a bead cutting position calculation unit 14c that calculates a bead cutting position of the electric resistance welded pipe P; and a tracking movement amount calculation unit 14d that calculates a tracking movement amount of the ultrasonic flaw detection sensor head 11.