Abstract:
The present disclosure includes a battery module that includes an electrochemical cell having a minor terminal. The battery module also includes a major terminal electrically coupled to the electrochemical cell, wherein the major terminal includes a base and a post extending from the base. Further, the battery module includes an electrical path between the minor terminal of the electrochemical cell and the major terminal of the battery module. The electrical path includes a bus bar having an opening that receives the post of the major terminal and a pocket that retains the base of the major terminal.
Abstract:
A battery system having a bladed fuse connector and a method of operation of the bladed fuse connector are provided. The system may, in certain embodiments, include a printed circuit board (PCB) and a high current interconnect. The high current interconnect may be mounted to and extending upward from the PCB. The battery system may also include a fuse. The fuse may limit an amount of current flowing through the battery system. Additionally, the battery system may include a bladed fuse connector coupled between the high current interconnect and the fuse. The bladed fuse connector may carry a current between the high current interconnect and the fuse. To that end, the bladed fuse connector may include an S-shaped bend between the high current interconnect and the fuse.
Abstract:
A battery system includes a battery module housing cover having a recess in which a module terminal is positioned, the recess having a recess geometry; and a battery terminal connector having a terminal connector interface establishing an electrical and physical connection with the module terminal, and an insulative cover covering the terminal connector interface, wherein the insulative cover has a cover geometry, and the cover geometry matches the recess geometry.
Abstract:
A lid assembly 56 for use in a battery module 22 includes a lid 290 with apertures 292 extending through the lid 290 in a vertical direction, where each of the apertures 292 is configured to receive a terminal 232 of a battery cell 54 of the battery module 22. The lid assembly 56 also includes one or more extensions 332 extending away from the lid 290 in the vertical direction. Each of the one or more extensions 332 is configured to couple the lid 290 to a printed circuit board assembly 58 of the battery module 22. The lid assembly 56 also includes walls 334 extending away from the lid 290 in the vertical direction. Each of the walls 334 is configured to extend between a first terminal 232 of a first battery cell 54 and a second terminal 232 of a second battery cell 54.
Abstract:
A bus bar including a first end comprising a first material and a second end comprising a second material and a method of manufacture are provided. The first end is designed to be coupled to a terminal of a first battery cell of a battery module and includes a first collar disposed on the first end designed to receive and surround the terminal of the first battery cell of the battery module. The second end is designed to be coupled to a terminal of a second battery cell of the battery module and includes a second collar disposed on the second end designed to receive and surround the terminal of the second battery of the battery module. The first and second batteries of the battery module are adjacent to one another. Moreover, the bus bar includes a joint electrically and mechanically coupling the first end and the second end.
Abstract:
A terminal for a battery module and a method of manufacture of the terminal are provided. The battery module may include a plurality of battery cells and a bus bar. The bus bar may be electrically coupled to the plurality of battery cells. The battery module also may include a battery terminal that carries a voltage from the bus bar. The battery terminal may include a generally cylindrical terminal portion and a connector. The connector may be coupled to the bus bar cell interconnect. The battery terminal also may include a bent portion. The bent portion is disposed between the terminal portion and the connector.
Abstract:
The present disclosure relates to a lithium-ion battery module including a housing having a base, a battery cell in the housing, and a battery module terminal coupled to the battery cell via an electrical pathway, wherein the battery module terminal provides an electrical output when coupled to an electrical load, and wherein the electrical pathway is defined by a first portion, a second portion, and an interconnecting portion connecting the first and second portions. The first portion has a plurality of first conductive components coupled to one another within first connection planes using a first conductive material, and the first connection planes are substantially parallel to the base. The second portion has a plurality of second conductive components coupled to one another within second connection planes using a second conductive material, different from the first conductive material, and the second connection planes are crosswise to the first connection planes.
Abstract:
A printed circuit board (PCB) assembly 58 may include a PCB 136 and a high current interconnect 140 mounted on the PCB 136. The high current interconnect 140 may be configured to electrically couple a first high current bladed component 153, a second high current bladed component 154, and a trace disposed on the PCB 136. The high current interconnect 140 may include feet 145 made of a conductive material that are coupled to the PCB 136. The trace may be coupled to the feet 148 via a weld.
Abstract:
Present embodiments are directed to a battery module including a venting assembly and a method of manufacturing the battery module. The venting assembly may, in certain embodiments, be designed to vent gases from a plurality of battery cells disposed in a housing of the battery module. Each of the plurality of battery cells may include a battery cell vent. The venting assembly may include a lid designed to be coupled to the housing and disposed over the battery cells in the housing. In some embodiments, the lid includes a vent chamber formed in the lid and designed to receive and direct gases vented from the plurality of battery cells away from the battery module.
Abstract:
A battery module including bus bar cell interconnects and a method of manufacture are provided. The battery module may, in certain embodiments, include a housing, a plurality of battery cells disposed in the housing, and a bus bar cell interconnect. The bus bar cell interconnect is designed to electrically couple a first battery cell and a second battery cell. In some embodiments, the bus bar cell interconnect includes a first end electrically coupled with a first terminal of the first battery cell and a second end electrically coupled with a second terminal of the second battery cell. The bus bar cell interconnect also includes a curved portion disposed between the first end and the second end, and the bus bar cell interconnect is designed to distribute stress across the curved portion.