Abstract:
A collapsible container for storing, transporting, and dispensing liquids which includes a generally rectangular shaped box, a spout which is fluidly interconnected to the box, a pouring spout member which is attachable to the spout, a handle, and a support member which maintains the position of the spout relative to the box. The pouring spout member may form a non-releasable connection with the spout to allow for single use of the container. The container may be configured such that, when viewed in lateral cross section and when viewed in longitudinal cross section, the container includes a continuous band of material surrounding the interior volume of the container that is maintained during storage, expansion, and use.
Abstract:
A method for operating a fluid drainage control system to drain a fluid from a fluid dispensation system is provided. The method includes determining a first ambient air temperature, determining if the first ambient air temperature is less than a predetermined drain set point temperature, isolating the fluid dispensation system from a fluid supply source by closing a supply valve located inside a temperature controlled area in response to the first ambient air temperature being less than the predetermined drain set point temperature, and draining the fluid from the fluid dispensation system by opening a drain valve subsequent to closing the supply valve. The method further includes determining a second ambient air temperature, determining if the second ambient air temperature is greater than a predetermined operation set point temperature, closing the drain valve in response to the second ambient air temperature being greater than the predetermined operation set point temperature, and opening the supply valve subsequent to closing the drain valve.
Abstract:
A method for operating a fluid dispensation system is provided. The method includes receiving a first control signal indicating that a fluid dispensation device within the fluid dispensation system is active, and determining a fluid additive quantity based upon the identity of the fluid dispensation device. The method also includes activating a fluid additive injection system, where the fluid additive injection system injects the fluid additive into the fluid dispensation system in response to the activation. The method further includes receiving a second control signal from the fluid additive injection system when the fluid additive quantity for the zone has been injected into the fluid dispensation system, and deactivating the fluid additive dispensation system in response to the second control signal.
Abstract:
A method for operating a fluid drainage control system to drain a fluid from a fluid dispensation system is provided. The method includes determining a first ambient air temperature, determining if the first ambient air temperature is less than a predetermined drain set point temperature, isolating the fluid dispensation system from a fluid supply source by closing a supply valve located inside a temperature controlled area in response to the first ambient air temperature being less than the predetermined drain set point temperature, and draining the fluid from the fluid dispensation system by opening a drain valve subsequent to closing the supply valve. The method further includes determining a second ambient air temperature, determining if the second ambient air temperature is greater than a predetermined operation set point temperature, closing the drain valve in response to the second ambient air temperature being greater than the predetermined operation set point temperature, and opening the supply valve subsequent to closing the drain valve.
Abstract:
A method for operating a fluid additive control system to inject a fluid additive into a fluid dispensation system is provided. The method includes receiving a first control signal indicating that a fluid dispensation device within the fluid dispensation system is active, and determining a fluid additive quantity based upon the identity of the fluid dispensation device. The method also includes activating a fluid additive injection system, where the fluid additive dispensation system injects the fluid additive into the fluid dispensation system in response to the activation. The method further includes receiving a second control signal from the fluid additive injection system when the fluid additive quantity for the zone has been injected into the fluid dispensation system, and deactivating the fluid additive dispensation system in response to the second control
Abstract:
A collapsible container for storing, transporting, and dispensing liquids which includes a generally rectangular shaped box, a spout which is fluidly interconnected to the box, a pouring spout member which is attachable to the spout, a handle, and a support member which maintains the position of the spout relative to the box. The pouring spout member may form a non-releasable connection with the spout to allow for single use of the container. The container may be configured such that, when viewed in lateral cross section and when viewed in longitudinal cross section, the container includes a continuous band of material surrounding the interior volume of the container that is maintained during storage, expansion, and use.