Abstract:
The present invention relates to a method of manufacturing an oxide electrode for a dye-sensitized solar cell including metal oxide nanoparticles by using a miller, and a dye-sensitized solar cell manufactured by using the same. More particularly, the present invention provides a method of manufacturing an oxide electrode for a dye-sensitized solar cell. The method includes (a) mixing metal oxide nanoparticles, a binder resin, and a solvent to prepare a metal oxide paste, (b) coating the metal oxide paste to a miller and pulverizing the metal oxide nanoparticles to prepare a paste including the metal oxide nanoparticles uniformly dispersed therein, and (c) coating the paste including the metal oxide nanoparticles dispersed therein on a conductive transparent substrate, performing a heat treatment of the resulting substrate, and adsorbing a dye thereon to manufacture the conductive electrode.
Abstract:
The present invention provides a gas sensor, including: a sensor substrate provided with an electrode; and a thin layer of sensor material formed by spraying a solution in which metal oxide nanoparticles are dispersed onto the sensor substrate. The gas sensor is advantageous in that a sensor material is formed into a porous thin layer containing metal oxide nanoparticles having a large specific surface area, thus realizing high sensitivity on the ppb scale and a high reaction rate. Further, the gas sensor is advantageous in that it can be manufactured at room temperature, and the thickness of a sensor material can be easily adjusted by adjusting the spray time, so that a thin gas sensor or a thick gas sensor can be easily manufactured.
Abstract:
The present invention provides a gas sensor, including: a sensor substrate provided with an electrode; and a thin layer of sensor material formed by spraying a solution in which metal oxide nanoparticles are dispersed onto the sensor substrate. The gas sensor is advantageous in that a sensor material is formed into a porous thin layer containing metal oxide nanoparticles having a large specific surface area, thus realizing high sensitivity on the ppb scale and a high reaction rate. Further, the gas sensor is advantageous in that it can be manufactured at room temperature, and the thickness of a sensor material can be easily adjusted by adjusting the spray time, so that a thin gas sensor or a thick gas sensor can be easily manufactured.