Abstract:
Offenbart sind Zusammensetzung und Verfahren zur Herstellung einer Kathode für einen Akkumulator, wobei ein Fluorophosphat der Formel LixNa2-xMnPO4F als ein Elektrodenmaterial verwendet wird. LixNa2-xMnPO4F wird durch partielle Substitution einer Natriumstelle mit Lithium durch ein chemisches Verfahren hergestellt. LixNa2-xMnPO4F, das gemäß der Erfindung hergestellt wird, stellt ein Kathodenmaterial für eine Lithiumbatterie mit verbesserter elektrochemischer Aktivität bereit.
Abstract:
Ein Kathodenmaterial für einen Akkumulator und ein Herstellungsverfahren desselben sind offenbart. Das Kathodenmaterial enthält einen Lithiummanganphosphat LiMnPO4/Natriummanganfluorophosphat Na2MnPO4F-Verbundstoff, bei welchem LiMnPO4 und Na2MnPO4F verschiedene Kristallstrukturen aufweisen. Zudem kann das Verfahren zum Herstellen des Kathodenmaterials in einem einzigen Schritt durch eine Hydrothermalsynthese erfolgen, was die Produktionszeit und Produktionskosten erheblich verringert. Zudem liefert die Offenbarung, dass die elektrische Leitfähigkeit des Kathodenmaterials durch Kohlenstoffbeschichtung verbessert werden kann und liefert dadurch ein Kathodenmaterial mit einer ausgezeichneten elektrochemischen Aktivität.
Abstract:
PURPOSE: A negative electrode material for non-aqueous lithium secondary battery is provided to restrain the deterioration due to precipitation of metal lithium, and to obtain capacity and charging/discharging efficiency similar with existing transition metal oxide, or superior. CONSTITUTION: A negative electrode material for non-aqueous lithium secondary battery comprises lithium vanadium metal oxide formed by synthesizing lithium material, vanadium material, and hetero metal material. A manufacturing method of the negative electrode material comprises: a step of forming mixture by mixing lithium material, vanadium material, and the hetero metal material according to LiaVbMcO2(in here, 0.5
Abstract:
The present invention relates to a precursor of a cathode active material for a lithium secondary battery, a method for manufacturing the precursor, a cathode active material, and a lithium secondary battery including the cathode active material. More particularly, the precursor for the lithium secondary battery is represented by Chemical Formula 1. The precursor of the cathode active material for the lithium secondary battery has a concentration deviation of manganese ions in the precursor of 3 wt% or less. [Chemical Formula 1] NixCoyMn1-x-y-zMz(OH)2. In Chemical Formula 1, 0
Abstract:
The present invention relates to an anode active material, a non-aqueous lithium secondary battery including the same, and a manufacturing method thereof, which improve a battery life and high-rate capability of a non-aqueous lithium secondary battery that uses a carbon-based material as an anode active material. The anode active material according to the present invention comprises a carbon-based material, and a coating film formed on the surface of the carbon-based material by performing heat treatment using an ammonia-based compound. Here, the coating film may be formed on the surface of the carbon-based material through a thermal decomposition method using 10% or less by weight of the ammonia-based compound with respect to the carbon-based material. Since the surface of the carbon-based material is thermally treated using the ammonia-based compound, a side reaction of the carbon-based material with an electrolyte at the surface thereof can be suppressed and the structural stability can be enhanced, thereby improving a battery life and high-rate capability of a non-aqueous lithium secondary battery.
Abstract:
The present invention relates to a precursor for a lithium secondary battery, to a cathode active material including the precursor, to a method for manufacturing the cathode active material, and to a lithium secondary battery including the cathode active material. More particularly, the precursor is plate-shaped and has a thickness of about 1 nm to about 30 nm, and is represented by following chemical formula 1: [Chemical formula 1] NixCoyMn1-x-y-zMz(OH)2. In chemical formula 1, 0
Abstract:
The present invention relates to a microcapsule with a fire extinguishing composition built therein, and a lithium secondary battery having the same; and is intended to reduce the risk of ignition or explosion by stopping the operation of the battery or lowering the activity of internal material when heat is abnormally generated by a malfunction or over-charging of the lithium secondary battery. A microcapsule for a lithium secondary battery according to the present invention comprises: a micro-sized cell wall which is made of thermoplastic resin and has a closed space formed therein; and a fire extinguishing composition contained in the closed space of the cell wall. Such a microcapsule may be included in at least one of an anode, a cathode, a separator, and electrolyte to fabricate a lithium secondary battery. Therefore, the lithium secondary battery usually operates normally. However, when excessive heat is generated by a malfunction or over-charging, the cell wall melts and discharges the fire extinguishing composition to the outside of the cell wall, thus stopping the operation of the lithium secondary battery and lowering the activity of the internal material, and thereby preventing the lithium secondary battery from igniting or exploding.
Abstract:
The present invention relates to a cathode active material for a lithium secondary battery, to a method for manufacturing same, and to a lithium secondary battery including same. The cathode active material for a lithium secondary battery includes: a lithium metal complex oxide core represented by the following chemical formula 1; and a coating layer disposed on the outer portion of the lithium metal complex oxide core and including a fluorine compound. [Chemical formula 1]: LiwNixCoyMn1-x-y-zMzO2, wherein, in chemical formula 1, 1.2