Abstract:
A method of reconstructing reference time information of a transmission frame in a digital satellite communication system is provided, including: receiving the transmission frame including reference time information; recording receiving time of start of frames of the plurality of physical layer frames included in the transmission frame; determining receiving time of a start of frame corresponding to the physical layer frames including the reference time information based on the recorded information when the physical layer frame including the reference time information is received; and reconstructing the reference time information based on the determined receiving time information of the start of frame. Network synchronization is stably acquired and maintained during two-way communication even in the satellite communication network environment.
Abstract:
Disclosed is a frequency hopping system for converting frequencies of signals into RF (radio frequency) signals, which comprises: a frequency hopper (200) for outputting signals with temporarily varied frequencies according to a predetermined pattern; a fixed PLL (phase locked loop) unit (500) for outputting frequency-fixed signals; a mixer (400) for mixing the output signals of the frequency hopper and the fixed PLL unit, and outputting frequency-hopped local signals; and a modulator (100) for receiving I and Q (in-phase and quadrature-phase) signals from a baseband device, synthesizing the I and Q signals with the frequency-hopped local signals, combining the two synthesized signals, and outputting RF signals.
Abstract:
The present invention relates to Random Access Channel (RACH) access apparatus for mobile satellite communication system and method therefor. The method for accessing random access channel (RACH) on satellite system, random access channel (RACH) carrying message from a plurality of mobile stations to the satellite system, the method includes the steps of: receiving preamble and the message, the message successively transmitted with the preamble from the plurality of mobile stations; and transmitting acquisition response signal corresponding to the preamble or the message to the plurality of mobile stations. Accordingly, success of packet reception of satellite system is improved and transmission delay is reduced.
Abstract:
A variable length packet data transmission apparatus and method are provided. The variable length packet data transmission apparatus using a variable length packet transmission technique includes a data transmitter (10) generating synchronization information for synchronizing data communication with a data receiving apparatus (20), including the generated synchronization information in transmission data to be transmitted according to a variable length packet transmission technique, and transmitting the transmission data including the synchronization information to the data receiving apparatus (20), and a data receiver (20) receiving the transmission data including synchronization information from a data transmission apparatus (10), reconstructing the synchronization information included in the received transmission data, and performing synchronization with the data transmission apparatus (10) using the reconstructed synchronization information.
Abstract:
Provided is a satellite network communication system based on Second Generation Digital Video Broadcasting via Satellite (DVB-S2). A method for encapsulating transmission data in a digital satellite communication system includes: determining whether a time at which a reference time information packet has to be inserted into a packet data unit is arrived, in the digital satellite communication system; and if the time at which the reference time information packet has to be inserted into the packet data unit is arrived, transforming the packet data unit in the form of a baseband data packet including the reference time information packet. Therefore, by allowing transmission of Network Clock Reference (NCR) information in a satellite communication environment based on Generic Steam Encapsulation (GSE), bidirectional satellite communications are possible.
Abstract:
A system for controlling temperature of an antenna module including a heat generating module, and a radome and an underbody cover that enclose the heat generating module. The system includes: a heat collecting unit mounted on inner surface of the antenna module; a heat discharging unit mounted on outer surface of the antenna module; and a heat transfer unit for transferring heat from the heat collecting unit to the heat discharging unit.
Abstract:
A receiving system for estimating symbol timing in a feed-forward manner comprises: a matched filter for receiving baseband signals and dividing them into real and imaginary numbers; a symbol timing estimator for receiving signals from the matched filter and estimating symbol timing using variables; a storage unit for storing the variables and outputting them according to requests of the symbol timing estimator; an interpolator for receiving a symbol timing estimate from the symbol timing estimator, and interpolating symbol-reading timing of the baseband signal; a delayer for delaying the baseband signal input to the interpolator; an RF/IF signal processor for receiving RF signals and performing RF/IF signal processing; and a baseband converter for converting the signal output from the RF/IF signal processor into baseband signals, and outputting them to the matched filter.
Abstract:
A method for controlling data transmission rate in order to save waste of resources due to Non-Line Of Sight (NLOS) region when a mobile terminal passes through the NLOS region in an interactive satellite communication system is disclosed. The method includes the steps of setting at least one threshold; at a Network Control Center (NCC) adjusting allocated resources based on the Constant Resources Allocation (CRA) after detecting whether Satellite Access Control is lost or not; compensating transmission delay by reallocating if the mobile terminal returns from the NLOS region within a first threshold duration, wherein the mobile terminal maintains the fine sync state during the first threshold duration; and deallocating all resources allocated based on the CRA if the mobile terminal does not return from the NLOS region within the first threshold duration.
Abstract:
A reference clock recovery apparatus is provided and includes a tuning unit for receiving a modulated signal and converting the modulated signal into a digital value; a first frequency difference detecting unit for detecting a frequency difference between the central station and a terminal; first and second filtering unit for smoothing the frequency difference; a second frequency difference detecting unit for causing the terminal to maintain a synchronization to the cl.ock of the central station; a switching unit for selecting an operation of the first frequency difference detecting unit or an operation of the second frequency difference detecting unit; an digital-to-analog converting unit for converting a digital signal into an analog signal; an oscillating unit for receiving an output of the digital-to-analog converting unit and outputting a desired frequency; a counting unit for counting the clocks and outputting the count value; and a transmitting unit for transmits the timing information.