-
公开(公告)号:US10854886B2
公开(公告)日:2020-12-01
申请号:US16268856
申请日:2019-02-06
Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
Inventor: Jong Hyun Jang , Hee-Young Park , Jea-woo Jung , Hyoung-Juhn Kim , Dirk Henkensmeier , Sung Jong Yoo , Jin Young Kim , So Young Lee , Hyun Seo Park
IPC: H01M4/92
Abstract: A method for preparing a carbon-supported, platinum-cobalt alloy, nanoparticle catalyst includes mixing a solution containing, in combination, a platinum precursor, a transition metal precursor consisting of a transition metal that is cobalt, carbon, a stabilizer that is oleyl amine, and a reducing agent that is sodium borohydride to provide carbon-supported, platinum-cobalt alloy nanoparticles, and washing the carbon-supported, platinum-cobalt alloy, nanoparticles using ethanol and distilled water individually or in combination followed by drying at room temperature to obtain dried carbon-supported, platinum-cobalt alloy, nanoparticles; treating the dried carbon-supported, platinum-cobalt alloy, nanoparticles with an acetic acid solution having a concentration ranging from 1-16M to provide acetic acid-treated nanoparticles, and washing the acetic acid-treated nanoparticles using distilled water followed by drying at room temperature to obtain dried acetic acid-treated nanoparticles; and heat treating the dried acetic acid-treated nanoparticles at a temperature ranging from 600 to 1000° C. under a hydrogen-containing atmosphere.
-
公开(公告)号:US11090634B2
公开(公告)日:2021-08-17
申请号:US16268913
申请日:2019-02-06
Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY , GLOBAL FRONTIER CENTER FOR MULTISCALE ENERGY SYSTEMS
Inventor: Sung Jong Yoo , Sehyun Lee , Hee-Young Park , Jong Hyun Jang , Jin Young Kim , Hyoung-Juhn Kim , Jea-woo Jung
Abstract: Disclosed is a method for preparing a carbon-supported platinum-transition metal alloy nanoparticle catalyst using a stabilizer. According to the method, the transition metal on the nanoparticle surface and the stabilizer are simultaneously removed by treatment with acetic acid. Therefore, the method enables the preparation of a carbon-supported platinum-transition metal alloy nanoparticle catalyst in a simple and environmentally friendly manner compared to conventional methods. The carbon-supported platinum-transition metal alloy nanoparticle catalyst can be applied as a high-performance, highly durable fuel cell catalyst.
-