Abstract:
The present invention relates to an ellipsometer using a half-mirror, and more particularly, to an ellipsometer using a half-mirror, in which, instead of using rectangular prism type or glass plate type beam splitter that transmits some of the light and reflects the rest of the light as in a conventional vertical incident type focused-beam ellipsometer, the light is reflected to half of the object lens by a half-mirror and the light reflected from the half of the focus of the object lens is not transmitted through the beam splitter but is detected directly by a photodetector, and thus light interference due to the beam splitter is prevented and the light intensity is increased to maximally four times to thereby allow more accurate and precise measurement and analysis of physical properties for a sample of nanofilm or nano-pattern.
Abstract:
Provided is an optical element rotation type Mueller-matrix ellipsometer for solving a problem of measurement accuracy and measurement precision occurring due to residual polarization of a light source, polarization dependence of a photo-detector, measurement values of Fourier coefficients of a high order term in dual optical element rotation type Mueller-matrix ellipsometers according to the related art capable of measuring some or all of components of a Mueller-matrix for any sample.
Abstract:
Provided is a multi-channel surface plasmon resonance sensor using beam profile ellipsometry; and, more particularly, to a high sensitive measuring technology, which is coupled with a vertical illumination type focused-beam ellipsometer using a multi-incident angle measurement method, and a surface plasmon resonance (SPR) sensing part deposited with a metal thin film. The multi-channel surface plasmon resonance sensor includes a vertical illumination type focused-beam ellipsometer, in which light is polarized; a surface plasmon resonance (SPR) sensing part which is provided at the objective lens part of the focused-beam ellipsometer so as to generate SPR according to an angle change of the polarized light; and a flow unit which supplies a buffer solution containing a bio material binding to or dissociation from the metal thin film generating surface plasmon, wherein the SPR and the ellipsometric phase change by change in an angle and a wavelength are simultaneously detected.
Abstract:
Provided is a multi-channel surface plasmon resonance sensor using beam profile ellipsometry; and, more particularly, to a high sensitive measuring technology, which is coupled with a vertical illumination type focused-beam ellipsometer using a multi-incident angle measurement method, and a surface plasmon resonance (SPR) sensing part deposited with a metal thin film. The multi-channel surface plasmon resonance sensor includes a vertical illumination type focused-beam ellipsometer in which light is polarized; a surface plasmon resonance (SPR) sensing part which is provided at the objective lens part of the focused-beam ellipsometer; and a multi-channel flow unit which supplies a buffer solution containing a bio material binding to or dissociation from a metal thin film generating surface plasmon.
Abstract:
The present invention relates to a minute measuring instrument for high speed and large area and a method thereof, and more particularly, to a minute measuring instrument for high speed and large area which measures properties of a specimen in high speed by a focused-beam ellipsometric part and then minutely remeasures the position showing a singular point by a minute measuring part and a method thereof.
Abstract:
The present invention relates to a single-polarizer focused-beam ellipsometer, and more particularly, to a focused-beam ellipsometer having a simplified structure in which a single polarizing beam splitter plays roles as a polarization generator, a beam splitter and a polarization analyzer. A measuring method is employed in which a multiple incidence plane measurement method is applied to multiple angles of incidence, and thus it is possible to analyze exact information for optical properties of the specimen, i.e., in the case of a thin film, thickness and refractive index of the thin film.
Abstract:
The present invention relates to The present invention relates to an ellipsometer, and more particularly, to a linear focused-beam ellipsometer which linearly focuses a light on a specimen using a cylindrical optical system and then measures variation in polarization state of the reflected light. A light split by the beam splitting part is linearly focused onto a plurality of specimens and variation in polarization state of the reflected light is measured with respect to multiple angles of incidence. Therefore, it is possible to measure a plurality of specimens at the same time.
Abstract:
The present invention relates to an ellipsometer, and more particularly, to an ellipsometer to find out the optical properties of the sample by analyzing the variation of the polarization of a light which has specific polarisation then reflected on a surface of the sample.
Abstract:
The present invention relates to a normal incidence ellipsometer and a method for measuring the optical properties of a sample by using same. The purpose of the present invention is to provide: a normal incidence ellipsometer in which a wavelength-dependent compensator is replaced with a wavelength-independent linear polarizer such that equipment calibration procedures are simplified while a measurement wavelength range expansion can be easily implemented; and a method for measuring the optical properties of a sample by using same.