Abstract:
A digital adjusting signal for adjusting a multi-channel SQUID system is transmitted only to a control circuit module including a SQUID channel selected in an embodiment of the present invention and not transmitted to other modules. Accordingly, the digital adjusting signal is prevented from flowing into all SQUID adjusting channels to minimize noise generated by the digital adjusting circuit of the SQUID channel and to stably control the SQUID sensor without malfunction.
Abstract:
Provided is a data synchronization apparatus. The data synchronization apparatus includes a signal conversion block converting individual serial digital signals into parallel digital signals in response to a load signal and converting the parallel digital signals into synchronized serial digital signals in response to a synchronization load signal which does not overlap the load signal, a clock/load signal generator outputting a reference load signal for generating the synchronization load signal to the signal conversion block, a multiplexer multiplexing the synchronized serial digital signals, and a first serial-to-parallel (S/P) converting the multiplexed signal into parallel signals.
Abstract:
Provided are an apparatus and a method for canceling magnetic fields. The apparatus includes a magnetic field canceling coil disposed adjacent to an inner wall of a magnetic shield room to surround the entire inner space or a portion of an inner space of the magnetic shield room; and a magnetic field canceling coil driver to supply current to the magnetic field canceling coil. The magnetic field canceling coil cancels a prepolarization magnetic field established on the wall of the magnetic shield room by a prepolarization coil disposed in the center of the magnetic shield room to minimize magnetic interference caused by the magnetic shield room.