METHOD AND APPARATUS FOR MEASURING MAGNETIC FIELD AND TEMPERATURE USING DIAMOND NITROGEN VACANCY SENSOR

    公开(公告)号:US20240168106A1

    公开(公告)日:2024-05-23

    申请号:US17991087

    申请日:2022-11-21

    CPC classification number: G01R33/032 G01R33/0017 G01R33/0082

    Abstract: Disclosed is a method and apparatus for measuring magnetic field and/or temperature using a diamond nitrogen-vacancy center sensor, and a measuring apparatus based on a diamond nitrogen-vacancy center (DNV) sensor may include: a diamond nitrogen-vacancy center sensor; a frequency synthesizer for generating a first reference signal and a second reference signal; a first microwave generator for generating a first microwave that is frequency modulated according to the first reference signal and causes a first spin transition in the diamond nitrogen-vacancy center sensor; a second microwave generator for generating a second microwave that is frequency modulated according to the second reference signal and causes a second spin transition in the diamond nitrogen-vacancy center sensor; a laser irradiator for applying a laser to excite the spin state of the diamond nitrogen-vacancy center sensor; a power amplifier for combining and amplifying the first microwave and the second microwave to apply to the diamond nitrogen-vacancy center sensor; a detector for detecting a fluorescence signal output from the diamond nitrogen-vacancy center sensor; a reference detector for measuring power of the laser; a differential circuit for outputting the difference between an output signal of the detector and an output signal of the reference detector; a first lock-in amplifier for outputting a result of comparing an output of the differential circuit with the first reference signal, and a second lock-in amplifier for outputting a result of comparing an output of the differential circuit with the second reference signal. Using the apparatus, it is possible to remove an influence of the temperature when measuring the magnetic field, and remove an influence of a change in the magnetic field when measuring the temperature, thereby enabling more precise measurement.

    Method and apparatus for measuring magnetic field and temperature using diamond nitrogen vacancy sensor

    公开(公告)号:US12130341B2

    公开(公告)日:2024-10-29

    申请号:US17991087

    申请日:2022-11-21

    CPC classification number: G01R33/032 G01R33/0017 G01R33/0082

    Abstract: Disclosed is a method and apparatus for measuring magnetic field and/or temperature using a diamond nitrogen-vacancy center sensor, and a measuring apparatus based on a diamond nitrogen-vacancy center (DNV) sensor may include: a diamond nitrogen-vacancy center sensor; a frequency synthesizer for generating a first reference signal and a second reference signal; a first microwave generator for generating a first microwave that is frequency modulated according to the first reference signal and causes a first spin transition in the diamond nitrogen-vacancy center sensor; a second microwave generator for generating a second microwave that is frequency modulated according to the second reference signal and causes a second spin transition in the diamond nitrogen-vacancy center sensor; a laser irradiator for applying a laser to excite the spin state of the diamond nitrogen-vacancy center sensor; a power amplifier for combining and amplifying the first microwave and the second microwave to apply to the diamond nitrogen-vacancy center sensor; a detector for detecting a fluorescence signal output from the diamond nitrogen-vacancy center sensor; a reference detector for measuring power of the laser; a differential circuit for outputting the difference between an output signal of the detector and an output signal of the reference detector; a first lock-in amplifier for outputting a result of comparing an output of the differential circuit with the first reference signal, and a second lock-in amplifier for outputting a result of comparing an output of the differential circuit with the second reference signal. Using the apparatus, it is possible to remove an influence of the temperature when measuring the magnetic field, and remove an influence of a change in the magnetic field when measuring the temperature, thereby enabling more precise measurement.

Patent Agency Ranking