Abstract:
An exemplary embodiment of the present invention provides an improved dielectric waveguide named electrical fiber. The electrical fiber with a metal cladding may isolate the interference of the signals in other wireless channels and adjacent electrical fibers, which typically causes band-limitation problem, for a smaller radiation loss and better signal guiding to lower the total transceiver power consumption as the transmit distance increases. Also, the electrical fiber may have frequency independent attenuation characteristics to enable high data rate transfer with little or even without any additional receiver-side compensation due to vertical coupling of the electrical fiber and an interconnection device.
Abstract:
According to one aspect of the invention, there is provided a waveguide for transmission of electromagnetic wave signals, comprising: a first dielectric part comprising a dielectric; a conductor part covering a part of the first dielectric part; and a second dielectric part surrounding the first dielectric part and the conductor part.
Abstract:
Disclosed is a printed circuit board (PCB) structure, in which an electromagnetic signal transmitting antenna and/or an electromagnetic signal receiving antenna, and an electromagnetic signal transferring tunnel (EM-tunnel) are embedded, the PCB structure including a PCB, an EM-tunnel that includes a dielectric core and a metal clad that surrounds the dielectric core and that is embedded in the PCB to be parallel to the PCB, and at least one transmitting antenna and/or at least one receiving antenna that are embedded in the PCB, wherein the transmitting antenna and/or the receiving antenna are arranged at an input port and an output port of the EM-tunnel embedded in the PCB to transmit and receive electromagnetic signals to and from the interior of the EM-tunnel.
Abstract:
Disclosed is a chip-to-chip interface using a microstrip circuit and a dielectric waveguide. A board-to-board interconnection device, according to one embodiment of the present invention, comprises: a waveguide which has a metal cladding and transmits a signal from a transmitter-side board to a receiver-side board; and a microstrip circuit which is connected to the waveguide and has a microstrip-to-waveguide transition (MWT), wherein the microstrip circuit matches a microstrip line and the waveguide, adjusts the bandwidth of a predetermined first frequency band among the frequency bands of the signal, and provides same to the receiver.
Abstract:
According to one aspect of the invention, there is provided a connector for connecting a waveguide and a board, comprising: a first opening part formed in a direction perpendicular to one side of a board and coupled to the one side of the board; a second opening part formed in a direction parallel to a longitudinal direction of a waveguide for signal transmission, wherein the waveguide is capable of being coupled to the second opening part; and a signal guide part connecting the first and second opening parts and including a hollowness surrounded by a conductive layer therein.
Abstract:
The present invention relates to a waveguide for transmission of electromagnetic wave signals. According to one aspect of the invention, there is provided a waveguide for transmission of electromagnetic wave signals, comprising: a dielectric part comprising two or more dielectrics having different permittivity; and a conductor part surrounding at least a part of the dielectric part.