Abstract:
A digital adjusting signal for adjusting a multi-channel SQUID system is transmitted only to a control circuit module including a SQUID channel selected in an embodiment of the present invention and not transmitted to other modules. Accordingly, the digital adjusting signal is prevented from flowing into all SQUID adjusting channels to minimize noise generated by the digital adjusting circuit of the SQUID channel and to stably control the SQUID sensor without malfunction.
Abstract:
Provided is signal processing device including superconducting quantum interference device (SQUID) sensors configured to sense a signal for each of a plurality of channels, analog to digital converters (ADC) configured to convert analog signals input to a predetermined number of channels from the SQUID sensors into digital signals by using a clock signal, local oscillators corresponding to the ADCs, respectively and configured to generate the clock signal having a reference clock frequency for an operation of a corresponding ADC, and a controller configured to the local oscillators to enable the reference clock frequency to have a frequency beyond a frequency range available to the SQUID sensor.