Machine image colour extraction and machine image construction using an extracted colour

    公开(公告)号:US11461931B2

    公开(公告)日:2022-10-04

    申请号:US16854975

    申请日:2020-04-22

    Applicant: L'Oreal

    Abstract: Provided are systems and methods to perform colour extraction from swatch images and to define new images using extracted colours. Source images may be classified using a deep learning net (e.g. a CNN) to indicate colour representation strength and drive colour extraction. A clustering classifier is trained to use feature vectors extracted by the net. Separately, pixel clustering is useful when extracting the colour. Cluster count can vary according to classification. In another manner, heuristics (with or without classification) are useful when extracting. Resultant clusters are evaluated against a set of (ordered) expected colours to determine a match. Instances of standardized swatch images may be defined from a template swatch image and respective extracted colours using image processing. The extracted colour may be presented in an augmented reality GUI such as a virtual try-on application and applied to a user image such as a selfie using image processing.

    Image-to-image translation using unpaired data for supervised learning

    公开(公告)号:US11995703B2

    公开(公告)日:2024-05-28

    申请号:US18102139

    申请日:2023-01-27

    Applicant: L'OREAL

    Abstract: Techniques are provided for computing systems, methods and computer program products to produce efficient image-to-image translation by adapting unpaired datasets for supervised learning. A first model (a powerful model) may be defined and conditioned using unsupervised learning to produce a synthetic paired dataset from the unpaired dataset, translating images from a first domain to a second domain and images from the second domain to the first domain. The synthetic data generated is useful as ground truths in supervised learning. The first model may be conditioned to overfit the unpaired dataset to enhance the quality of the paired dataset (e.g. the synthetic data generated). A run-time model such as for a target device is trained using the synthetic paired dataset and supervised learning. The run-time model is small and fast to meet the processing resources of the target device (e.g. a personal user device such as a smart phone, tablet, etc.)

    Image-to-image translation using unpaired data for supervised learning

    公开(公告)号:US11615516B2

    公开(公告)日:2023-03-28

    申请号:US17096774

    申请日:2020-11-12

    Applicant: L'OREAL

    Abstract: Techniques are provided for computing systems, methods and computer program products to produce efficient image-to-image translation by adapting unpaired datasets for supervised learning. A first model (a powerful model) may be defined and conditioned using unsupervised learning to produce a synthetic paired dataset from the unpaired dataset, translating images from a first domain to a second domain and images from the second domain to the first domain. The synthetic data generated is useful as ground truths in supervised learning. The first model may be conditioned to overfit the unpaired dataset to enhance the quality of the paired dataset (e.g. the synthetic data generated). A run-time model such as for a target device is trained using the synthetic paired dataset and supervised learning. The run-time model is small and fast to meet the processing resources of the target device (e.g. a personal user device such as a smart phone, tablet, etc.)

    SYSTEM AND METHOD FOR IMAGE PROCESSING USING DEEP NEURAL NETWORKS

    公开(公告)号:US20220122299A1

    公开(公告)日:2022-04-21

    申请号:US17565581

    申请日:2021-12-30

    Applicant: L'OREAL

    Abstract: A system and method implement deep learning on a mobile device to provide a convolutional neural network (CNN) for real time processing of video, for example, to color hair. Images are processed using the CNN to define a respective hair matte of hair pixels. The respective object mattes may be used to determine which pixels to adjust when adjusting pixel values such as to change color, lighting, texture, etc. The CNN may comprise a (pre-trained) network for image classification adapted to produce the segmentation mask. The CNN may be trained for image segmentation (e.g. using coarse segmentation data) to minimize a mask-image gradient consistency loss. The CNN may further use skip connections between corresponding layers of an encoder stage and a decoder stage where shallower layers in the encoder, which contain high-res but weak features are combined with low resolution but powerful features from deeper decoder layers.

    System and method for image processing using deep neural networks

    公开(公告)号:US11216988B2

    公开(公告)日:2022-01-04

    申请号:US16753214

    申请日:2018-10-24

    Applicant: L'OREAL

    Abstract: A system and method implement deep learning on a mobile device to provide a convolutional neural network (CNN) for real time processing of video, for example, to color hair. Images are processed using the CNN to define a respective hair matte of hair pixels. The respective object mattes may be used to determine which pixels to adjust when adjusting pixel values such as to change color, lighting, texture, etc. The CNN may comprise a (pre-trained) network for image classification adapted to produce the segmentation mask. The CNN may be trained for image segmentation (e.g. using coarse segmentation data) to minimize a mask-image gradient consistency loss. The CNN may further use skip connections between corresponding layers of an encoder stage and a decoder stage where shallower layers in the encoder, which contain high-res but weak features are combined with low resolution but powerful features from deeper decoder layers.

Patent Agency Ranking