Abstract:
The present invention is directed to compositions derived from polymers containing metal-nitrogen bonds, which compositions exhibit, among other things, desirable oxidation resistance, corrosion resistance and hydrolytic stability when exposed to adverse environments, whether at ambient or at elevated temperatures, and which may be useful as, for example, protective coatings on surfaces.
Abstract:
This invention relates to the discovery of organometallic ceramic precursor binders used to fabricate shaped bodies by different techniques. Exemplary shape making techniques which utilize hardenable, liquid, organometallic, ceramic precursor binders include the fabrication of negatives of parts to be made (e.g., sand molds and sand cores for metalcasting, etc.), as well as utilizing ceramic precursor binders to make shapes directly (e.g., brake shoes, brake pads, clutch parts, grinding wheels, polymer concrete, refractory patches and liners, etc.). In a preferred embodiment, this invention relates to thermosettable, liquid ceramic precursors which provide suitable-strength sand molds and sand cores at very low binder levels and which, upon exposure to molten metalcasting exhibit low emissions toxicity as a result of their high char yields of ceramic upon exposure to heat.
Abstract:
The present invention is directed to compositions derived from polymers containing metal-nitrogen bonds, which compositions exhibit, among other things, desirable oxidation resistance, corrosion resistance and hydrolytic stability when exposed to adverse environments, whether at ambient or at elevated temperatures, and which may be useful as, for example, protective coatings on surfaces.
Abstract:
This invention relates to the discovery of organometallic ceramic precursor binders used to fabricate shaped bodies by different techniques. Exemplary shape making techniques which utilize hardenable, liquid, organometallic, ceramic precursor binders include the fabrication of negatives of parts to be made (e.g., sand molds and sand cores for metalcasting, etc.), as well as utilizing ceramic precursor binders to make shapes directly (e.g., brake shoes, brake pads, clutch parts, grinding wheels, polymer concrete, refractory patches and liners, etc.). In a preferred embodiment, this invention relates to thermosettable, liquid ceramic precursors which provide suitable-strength sand molds and sand cores at very low binder levels and which, upon exposure to molten metalcasting exhibit low emissions toxicity as a result of their high char yields of ceramic upon exposure to heat.
Abstract:
A reaction injection molding process for preparing ceramics having at least two compositionally distinct ceramic phases is disclosed. For example, block copolymers prepared from an aluminum-nitrogen polymer and a polysilazane are filled with a ceramic powder, a metal powder or mixtures thereof and cured in the mold. An AlN/SiC-containing ceramic is formed by pyrolysis of the molded articles in a nonoxidizing atmosphere.