Abstract:
A method is provided of producing a self-supporting ceramic composite structure having one or more encasement members (14), such as an encasing stell sleeve, joined to it by growth of the ceramic material to engagement surface(s) of the encasement member(s) (14). A parent metal is contacted with a body of filler (38) which is encased by the encasement mmber(s) (14). The resulting assembly is heated to melt and oxidize the parent metal, e.g., aluminum, to form a polycrystalline material comprising an oxidation reaction product which grows through the body of filler (38) and stops at the engagement surface(s) of the encasement member(s) (14) which thereby determines the surface geometry of the grown ceramic matrix. Upon cooling, the encasement member(s) (14) is shrinkfitted about the ceramic composite body. The invention also provides the resultant articles, for example, a ceramic composite body having a stainless steel member affixed thereto.
Abstract:
A method of producing a self-supporting ceramic composite body having therein at least one cavity which inversely replicates the geometry of a positive mold of parent metal, includes embedding the mold of parent metal within a conformable bed of filler to provide therein a cavity shaped and filled by the mold. The assembly is heated to melt the parent metal mold, e.g., an aluminum parent metal mold, and contacted with an oxidant to oxidize the molten parent metal to form a polycrystalline material which grows through the surroundings of filler, the molten metal being drawn through the growing polycrystalline material to be oxidized at the interface between the oxidant and previously formed oxidation reaction product whereby the cavity formerly filled by the mold of parent metal is eventually evacuated by the metal. There remains behind a cavity whose shape inversely replicates the original shape of the mold. The method provides ceramic composite articles having therein at least one cavity inversely replicating the shape of the mold which supplied the parent metal for oxidation.
Abstract:
A method of producing a self-supporting ceramic composite body having therein at least one cavity which inversely replicates the geometry of a positive mold of parent metal, includes embedding the mold of parent metal within a conformable bed of filler to provide therein a cavity shaped and filled by the mold. The assembly is heated to melt the parent metal mold, e.g., an aluminum parent metal mold, and contacted with an oxidant to oxidize the molten parent metal to form a polycrystalline material which grows through the surroundings of filler, the molten metal being drawn through the growing polycrystalline material to be oxidized at the interface between the oxidant and previously formed oxidation reaction product whereby the cavity formerly filled by the mold of parent metal is eventually evacuated by the metal. There remains behind a cavity whose shape inversely replicates the original shape of the mold. The method provides ceramic composite articles having therein at least one cavity inversely replicating the shape of the mold which supplied the parent metal for oxidation.
Abstract:
A method for producing a self-supporting ceramic composite structure comprising a ceramic matrix embedding a filler (38) includes oxidizing a parent metal to form a polycrystalline material comprising the oxidation reaction product of the parent metal with an oxidant and, optionally, one or more metallic constituents, and the filler (38) embedded by the matrix. The method includes heating the parent metal to provide a first source (36) of molten parent metal and a reservoir (34) of molten parent metal and contacting the first source (36) of molten parent metal with a permeable bedding of filler (38). The first source (36) of molten parent metal is reacted with the oxidant to form the oxidation reaction product and is replenished from the reservoir (34) as the reacting continues for a time sufficient to grow the oxidation reaction product to a desired boundary and thereby embed at least a portion of the bedding of filler (38) within the oxidation reaction product to form the ceramic composite structure. The bedding of filler (38) may have any suitable shape, including that of a hollow body, the interior of which is contacted by the first source (36) of molten parent metal to grow the oxidation reaction product through the shaped, hollow body of filler.