Abstract:
The disclosure concerns self-supporting ceramic structures, including ceramic composite structures embedding a filler, and methods of making them. The ceramic structures comprise a polycrystlline material made by oxidation of a body of molten parent metal with an oxidant. The polycrystalline material has a first region substrate surmounted by a terminal region stratum which is integral with the first region. The terminal region stratum which is harder and of denser, finer crystalline structure than the first region substrate and is formed in a reaction stage subsequent to the reaction stage in which the first region of polycrystalline material is formed. Growth of the first stage is attained by by attenuating or interrupting the transport of molten parent metal to the first region under conditions which nonetheless leave or maintain therein enough oxidizable molten parent metal to form the polycrystalline material of the terminal region.
Abstract:
Ceramic bodies (2,4) are bonded together via a layer of an oxidation reaction product of a molten metal, which metal is present in one or both of the ceramic bodies (2,4) prior to bonding. At least one of the ceramic bodies (2,4) comprises a ceramic product formed by the oxidation reaction of molten parent metal (e.g., alumina from molten aluminum) and grown as molten metal is transported through, and oxidized on the surface of, its own oxidation product. One or both of the ceramic bodies (2,4) used in the bonding process contains surface-accessible channels of residual metal, i.e., metal channels which have resulted from molten-metal transport during the ceramic growth process. When the suitably assembled ceramic bodies (2,4) are heated in an oxidizing atmosphere at a temperature above the melting point of the residual metal, molten metal at the surface of the ceramic body reacts with the atmospheric oxidant so as to bond the facing surfaces together by a layer of the oxidation reaction product of the molten metal formed therebetween.
Abstract:
Ceramic bodies (2,4) are bonded together via a layer of an oxidation reaction product of a molten metal, which metal is present in one or both of the ceramic bodies (2,4) prior to bonding. At least one of the ceramic bodies (2,4) comprises a ceramic product formed by the oxidation reaction of molten parent metal (e.g., alumina from molten aluminum) and grown as molten metal is transported through, and oxidized on the surface of, its own oxidation product. One or both of the ceramic bodies (2,4) used in the bonding process contains surface-accessible channels of residual metal, i.e., metal channels which have resulted from molten-metal transport during the ceramic growth process. When the suitably assembled ceramic bodies (2,4) are heated in an oxidizing atmosphere at a temperature above the melting point of the residual metal, molten metal at the surface of the ceramic body reacts with the atmospheric oxidant so as to bond the facing surfaces together by a layer of the oxidation reaction product of the molten metal formed therebetween.
Abstract:
The disclosure concerns self-supporting ceramic structures, including ceramic composite structures embedding a filler, and methods of making them. The ceramic structures comprise a polycrystlline material made by oxidation of a body of molten parent metal with an oxidant. The polycrystalline material has a first region substrate surmounted by a terminal region stratum which is integral with the first region. The terminal region stratum which is harder and of denser, finer crystalline structure than the first region substrate and is formed in a reaction stage subsequent to the reaction stage in which the first region of polycrystalline material is formed. Growth of the first stage is attained by by attenuating or interrupting the transport of molten parent metal to the first region under conditions which nonetheless leave or maintain therein enough oxidizable molten parent metal to form the polycrystalline material of the terminal region.