Abstract:
Provided are a method for recording information in a magnetic recording element and a method for recording information in a magnetic random access memory. The method for recording in¬ formation in a magnetic recording element includes preparing the magnetic recording element having a magnetic free layer in which a magnetic vortex is formed. A current or a magnetic field whose direction varies with time is applied to the magnetic free layer to switch a core orientation of a magnetic vortex formed in the magnetic free layer to an upward direction or downward direction from a top surface of the magnetic free layer "0" or " 1 " is assigned according to the direction of the core orientation of the magnetic vortex formed in the magnetic free layer. According to the method for recording information in a magnetic recording element of the present invention, the core orientation of the magnetic vortex formed in the magnetic free layer of the magnetic recording element can be selectively switched by applying a current or magnetic field whose direction varies with time to the magnetic recording element, so that information can be easily and correctly recorded, lower power is consumed in recording information, and the switching for recording information can be performed very rapidly.
Abstract:
Provided are a method of generating strong spin waves, a method of simultaneously generating spin waves and electromagnetic waves, a logic operation device using spin waves, a variety of spin wave devices employing the same, and a method of controlling phases of spin waves. In the method of generating spin waves, strong spin waves are generated by supplying various shapes of energies to a magnetic material in which a magnetic vortex and magnetic antivortex spin structures exist separately or together. When energies are applied to a patterned magnetic material so that magnetic vortex or magnetic antivortex can be generated, a strong torque is generated in a vortex core so that strong spin waves can be generated from the vortex core. The spin waves generated in this way have large amplitudes, short wavelengths, and high frequencies. In the logic operation device using spin waves and the spin wave devices employing the same, wave factors of frequency, wavelength, amplitude, and phase of a spin wave generated by the method of generating spin waves are controlled and wave characteristics such as reflection, refraction, transmission, tunneling, superposition, interference, and diffraction are used. According to the present invention, logic operation spin wave devices capable of performing ultra¬ high speed information processing and various shapes of optical devices using waves in optics can be reconstructed using spin waves.
Abstract:
Provided are a method for read-out of information in a magnetic recording element and a method for read-out of information in a magnetic random access memory. In the method, a magnetic recording element including a magnetic free layer where a magnetic vortex is formed is prepared, and "0" or "1" is assigned according to a core orientation of a magnetic vortex formed in the magnetic free layer. The magnetic vortex core formed in the magnetic free layer rotates on the magnetic free layer by applying a current or magnetic field, of which a direction varies with time, to the magnetic free layer with the magnetic vortex formed. "0" or "1" assigned according to the core orientation of the magnetic vortex formed in the magnetic free layer is read out by measuring a characteristic caused by a difference in a rotation radius of the magnetic vortex core. Herein, the rotation radius of the magnetic vortex core, which is formed in the magnetic free layer and rotates by the applied current or magnetic field, varies with the core orientation of the magnetic vortex formed in the magnetic free layer.
Abstract:
Provided are an ultrafast magnetic recording element and a nonvolatile magnetic random access memory using the same. The magnetic recording element includes a read electrode, a magnetic pinned layer formed on the read electrode, and an insulating layer or a conductive layer formed on the magnetic pinned layer. The magnetic recording element includes a magnetic free layer formed on the insulating layer or the conductive layer, in which a magnetic vortex is formed, and a plurality of drive electrodes applying a current or magnetic field to the magnetic free layer. Alternatively, the magnetic recording element includes a magnetic free layer in which a magnetic vortex is formed, a plurality of drive electrodes applying a current or a magnetic field to the magnetic free layer, and a read line disposed around the magnetic free layer. Herein, a current generated by a voltage induced by the movement of a magnetic vortex core flows through the read line. According to the magnetic recording elements, the magnetic recording element with a simple structure can be realized using a magnetic layer with a magnetic vortex formed, and the magnetic recording element can be accurately driven with low power using a plurality of drive electrodes.
Abstract:
The object of this invention is to provide a water softener for softening hard water to produce soft water. This water softener is easily and simply connected to existing hot and cold water supply pipes, and installed proximately to a wall. In this water softener, hot and cold soft water tanks (1A, 1B), each having ion exchange resin (2), are installed at the tops of hot and cold valve housings (10A, 10B) such that the tanks are movable forward and backward while maintaining their vertical positions. The two valve housings (10A, 10B) are connected to hot and cold water supply pipes (30A, 30B), and control the flow of hard water fed from the two supply pipes (30A, 30B) so as to feed the hard water to the two tanks (1A, 1B), and discharge soft water or waste water from the tanks to the outside through a faucet (32).