Abstract:
Abstract A liquid crystal optical device is provided. The optical device includes a liquid crystal cell controlling optical properties of light passing there through and has: a liquid crystal layer, a planar electrode located to one side of said liquid crystal layer; an electric field control structure located to the opposite side of the liquid crystal layer; and a wavefront adjustment structure configured to provide optical phase front adjustment. In some embodiments the wavefront adjustment structure is a conductive floating electrode. In other embodiments the wavefront adjustment structure is a weakly conductive layer (WCL) having spatially variable sheet resistance. In other embodiments the wavefront adjustment structure is a weakly conductive structure having spatially variable sheet resistance with a frequency dependent characteristic.
Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device may be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and may be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
Abstract:
A liquid crystal optical device is provided. The optical device includes a liquid crystal cell controlling optical properties of light passing therethrough and has: a liquid crystal layer, a planar electrode located to one side of said liquid crystal layer; an electric field control structure located to the opposite side of the liquid crystal layer; and a wavefront adjustment structure configured to provide optical phase front adjustment. In some embodiments the wavefront adjustment structure is a conductive floating electrode. In other embodiments the wavefront adjustment structure is a weakly conductive structure having spatially variable sheet resistance. In other embodiments the wavefront adjustment structure a weakly conductive structure having spatially variable sheet resistance having a frequency dependent characteristic.
Abstract:
Abstract A liquid crystal optical device is provided. The optical device includes a liquid crystal cell controlling optical properties of light passing there through and has: a liquid crystal layer, a planar electrode located to one side of said liquid crystal layer; an electric field control structure located to the opposite side of the liquid crystal layer; and a wavefront adjustment structure configured to provide optical phase front adjustment. In some embodiments the wavefront adjustment structure is a conductive floating electrode. In other embodiments the wavefront adjustment structure is a weakly conductive layer (WCL) having spatially variable sheet resistance. In other embodiments the wavefront adjustment structure is a weakly conductive structure having spatially variable sheet resistance with a frequency dependent characteristic.
Abstract:
A liquid crystal optical device is provided. The optical device includes a liquid crystal cell controlling optical properties of light passing therethrough and has: a liquid crystal layer, a planar electrode located to one side of said liquid crystal layer; an electric field control structure located to the opposite side of the liquid crystal layer; and a wavefront adjustment structure configured to provide optical phase front adjustment. In some embodiments the wavefront adjustment structure is a conductive floating electrode. In other embodiments the wavefront adjustment structure is a weakly conductive structure having spatially variable sheet resistance. In other embodiments the wavefront adjustment structure a weakly conductive structure having spatially variable sheet resistance having a frequency dependent characteristic.
Abstract:
A liquid crystal optical device is provided. The optical device includes a liquid crystal cell controlling optical properties of light passing therethrough and has: a liquid crystal layer, a planar electrode located to one side of said liquid crystal layer; an electric field control structure located to the opposite side of the liquid crystal layer; and a wavefront adjustment structure configured to provide optical phase front adjustment. In some embodiments the wavefront adjustment structure is a conductive floating electrode. In other embodiments the wavefront adjustment structure is a weakly conductive structure having spatially variable sheet resistance. In other embodiments the wavefront adjustment structure a weakly conductive structure having spatially variable sheet resistance having a frequency dependent characteristic.
Abstract:
Los aparatos de cristal líquidos variables para controlar la propagación de la luz a través de una capa de cristal líquido utilizan un material dependiente de la frecuencia para reconfigurar dinámicamente las estructuras efectivas de los electrodos en el aparato. La frecuencia de una señal de operación que genera un campo eléctrico en el aparato puede ser variada, y el material dependiente de la frecuencia tiene diferentes movilidades de carga para las diferentes frecuencias. En una movilidad de baja carga, el material dependiente de la frecuencia tiene poco efecto en la estructura existente del electrodo. Sin embargo, en una movilidad de alta carga, el material dependiente de la frecuencia aparece como una extensión de los electrodos fijos, y puede ser utilizada para cambiar la estructura efectiva del electrodo y de esta manera, el perfil espacial del campo eléctrico. Este, a la vez, cambia las propiedades ópticas del cristal líquido, permitiendo de esta manera que el aparato óptico sea controlable por la frecuencia.
Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device may be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and may be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.