Abstract:
Discussed are an apparatus and method for driving a liquid crystal display device, whereby the apparatus includes a data driver for driving data lines of a liquid crystal panel, setting detectable temperatures for different temperature detection time points, detecting an ambient temperature at each temperature detection time point, and outputting a gate drive voltage variation signal and a common voltage variation signal in accordance with the set and detected temperatures at each temperature detection time point, and a power supplier for varying levels of a gate drive voltage and a common voltage in accordance with the gate drive voltage variation signal and the common voltage variation signal, and supplying the gate drive voltage and common voltage to a gate driver and the liquid crystal panel, respectively.
Abstract:
A solar cell module is discussed. The solar cell module is defined with an effective area and a dead area, and includes a solar cell, and a substrate disposed at one surface of the solar cell. The substrate includes a light refraction pattern formed to correspond to the dead area.
Abstract:
A solar cell panel is discussed, which includes a plurality of solar cells, each solar cell including a substrate having a first surface and a second surface opposite the first surface, and a plurality of first electrodes extending in a first direction; an interconnector that is positioned in a second direction crossing the plurality of first electrodes and electrically connects adjacent ones of the plurality of solar cells to one another; and a conductive adhesive film including a resin and a plurality of conductive particles dispersed in the resin, the conductive adhesive film being positioned between the plurality of first electrodes and the interconnector in the second direction crossing the plurality of first electrodes to electrically connect the plurality of first electrodes to the interconnector.
Abstract:
A solar cell panel is discussed. The solar cell panel includes a plurality of solar cells each including a substrate and an electrode part positioned on a surface of the substrate, an interconnector for electrically connecting at least one of the plurality of solar cells to another of the plurality of solar cells, and a conductive adhesive film including a resin and a plurality of conductive particles dispersed in the resin. The conductive adhesive film is positioned between the electrode part of the at least one of the plurality of solar cells and the interconnector to electrically connect the electrode part of the at least one of the plurality of solar cells to the interconnector. A width of the interconnector is equal to or greater than a width of the conductive adhesive film.