Abstract:
A photovoltaic module includes: a solar cell module including a plurality of solar cells; and a junction box including a capacitor unit attached to one face of the solar cell module and that to stores DC power supplied from the solar cell module, and a dc/dc converter unit to convert the level of the stored DC power and output the same. Thus, power may be easily supplied through the junction box.
Abstract:
A power conversion apparatus, a photovoltaic module, and a communication device and a photovoltaic system including the same are discussed. The power conversion apparatus includes an inverter unit to perform alternating current (AC) voltage conversion based on direct current (DC) voltage from a solar cell module, a controller to control the inverter unit, and a communication unit to add a carrier frequency signal containing predetermined information to the converted AC voltage and output the AC voltage containing the predetermined information to a grid and, when a level of the converted AC voltage is equal to or less than a predetermined level, to add the carrier frequency signal containing the predetermined information to DC voltage and output the DC voltage containing the predetermined information to the grid. Consequently, it is possible to stably transmit information.
Abstract:
Disclosed is a photovoltaic module. The photovoltaic module includes a solar cell module including a plurality of solar cells, and an inverter unit to receive a direct current (DC) voltage from the solar cell module and convert the DC voltage received from the solar cell module into an alternating current (AC) voltage without converting a level of the DC voltage received from the solar cell module.
Abstract:
Discussed are a power conversion apparatus and a photovoltaic module including the power conversion apparatus. The power conversion apparatus includes a converter unit to convert DC voltage from a solar cell module, the converter unit including a plurality of interleaving converters, and a controller to control the converter unit, wherein the controller changes switching periods of the interleaving converters and changes phase differences between the interleaving converters during operation sections of the interleaving converters, in response to a change of the switching periods of the interleaving converters. Consequently, it is possible to prevent instantaneous reduction of output power due to change of switching frequencies of the interleaving converters.
Abstract:
A photovoltaic module includes: a solar cell module including a plurality of solar cells; a junction box including a dc/dc converter unit to convert the level of DC power supplied from the solar cell module; a plate on one surface of the solar cell module and disposed between the solar cell module and the junction box; and a coupling member attaching and detaching the junction box from the solar cell module.
Abstract:
Discussed is a photovoltaic module including: a solar cell module including a plurality of solar cells; a converter to convert a level of first direct current (DC) power input from the solar cell module, and to output second DC power; an inverter to convert the second DC power supplied from the converter into alternating current (AC) power; and a controller to control the converter and the inverter, wherein the converter comprises: a full-bridge switching part to switch the first DC power; a transformer having an input side connected to an output terminal of the full-bridge switching part; and a half-bridge switching part connected to an output side of the transformer, wherein the controller changes a switching frequency of the full-bridge switching part and the half-bridge switching part in a first section of a waveform.
Abstract:
A photovoltaic module includes a solar cell module including multiple solar cells, and first and second conductive lines connected respectively to first and second solar cells among the solar cells, and a junction box attached to the solar cell module. The junction box includes a power conversion unit including a capacitor unit located between the first and second conductive lines, a converter unit to change the level of a DC voltage at opposite ends of the capacitor unit and to output the DC voltage, and a controller to control the converter unit. When shading occurs in some of the solar cells, the power conversion unit supplies a second current, the level of which is lower than the level of a first current supplied before shading occurs, whereby the possibility of generation of a hot spot may be reduced despite the absence of bypass diodes when shading occurs.
Abstract:
Disclosed herein is a solar cell module. The solar cell module includes a solar cell panel, a distribution box located on the rear surface of the solar cell panel and including wiring connected to the solar cell panel, and a light source configured to emit light to the front surface of the solar cell panel through the solar cell panel, if an error signal is detected.
Abstract:
A photovoltaic module is discussed. The photovoltaic module includes a solar cell module including a plurality of solar cells and a junction box attached to a rear surface of the solar cell module, the junction box including a power conversion module to convert direct current (DC) voltage supplied from the solar cell module into alternating current (AC) voltage and to output the AC voltage, wherein the power conversion module included at least one bypass diode to receive the DC voltage from the solar cell module, a converter unit to power-convert the DC voltage from the at least one bypass diode, the converter unit including at least three interleaving converters, a capacitor to store voltage output from the converter unit, and an inverter unit to output the AC voltage using the voltage stored in the capacitor. Consequently, it is possible to stably output AC voltage.
Abstract:
A photovoltaic module includes a solar cell module including multiple solar cells, and first and second conductive lines connected respectively to first and second solar cells among the solar cells, and a junction box attached to the solar cell module. The junction box includes a power conversion unit including a capacitor unit located between the first and second conductive lines, a converter unit to change the level of a DC voltage at opposite ends of the capacitor unit and to output the DC voltage, and a controller to control the converter unit. When shading occurs in some of the solar cells, the power conversion unit supplies a second current, the level of which is lower than the level of a first current supplied before shading occurs, whereby the possibility of generation of a hot spot may be reduced despite the absence of bypass diodes when shading occurs.