Abstract:
A heat exchanger and a method of manufacturing the same are provided. With the method, a tube may be inserted into a through hole formed in at least one fin coated with a filler metal, and the tube and a fin collar of the at least one fin may be joined through the filler metal by a brazing processing. A flange may not be formed on or at a top of the at least one fin collar, which protrudes vertically from a central longitudinal plane of the at least one fin. The tube may be made of aluminum (Al), and an interval between an outer circumferential surface of the tube and an inner circumferential surface of the fin collar of the at least one fin may be approximately 0.1 mm or less. Accordingly, contact resistance occurring when fabricating a fin-tube heat exchanger using a mechanical tube expansion method may be reduced, and heat transfer performance of the heat exchanger may be improved because grooves formed within the tube may not be deformed.
Abstract:
Provided are a heat exchanger and a method for manufacturing the same. The heat exchanger includes a refrigerant tube through which refrigerant flows, and a fin comprising a through hole in which the refrigerant tube is inserted and a cutoff part extending outward from the through hole.
Abstract:
A heat exchanger includes: a heat transfer pipe to guide a refrigerant; and a plurality of fins spaced apart from each other to allow air to pass in a first direction, the plurality of fins each having a through-hole through which the heat transfer pipe is installed, wherein the plurality of fins each includes: a corrugated portion formed in a zigzag shape proceeding in the first direction, which is an air flow direction; and a sheet portion recessed from the corrugated portion around the through-hole to be parallel with the first direction, and, when dividing a fin, among the plurality of fins, into a plurality of units with respect to one sheet portion, an area of the sheet portion corresponds to 16% or more of an area of one unit, thereby allowing air to be actively mixed in a region adjacent to the corrugated portion and the through-hole.
Abstract:
A heat pump is provided. The heat pump may include an outdoor heat exchanger that performs a heat exchange operation between refrigerant and outdoor air. The outdoor heat exchanger may include a refrigerant tube that guides refrigerant therethrough, and one or more fins coupled to the refrigerant tube. One face of each of the fins may be coated with a water repellent coating material and another face thereof may be coated with a hydrophilic coating material. An area coated with the water repellent coating material may be greater than an area coated with the hydrophilic coating material.
Abstract:
A heat exchanger and a method of manufacturing the same are provided. With the method, a tube may be inserted into a through hole formed in at least one fin coated with a filler metal, and the tube and a fin collar of the at least one fin may be joined through the filler metal by a brazing processing. A flange may not be formed on or at a top of the at least one fin collar, which protrudes vertically from a central longitudinal plane of the at least one fin. The tube may be made of aluminum (Al), and an interval between an outer circumferential surface of the tube and an inner circumferential surface of the fin collar of the at least one fin may be approximately 0.1 mm or less. Accordingly, contact resistance occurring when fabricating a fin-tube heat exchanger using a mechanical tube expansion method may be reduced, and heat transfer performance of the heat exchanger may be improved because grooves formed within the tube may not be deformed.
Abstract:
A heat pump is provided. The heat pump may include an outdoor heat exchanger that performs a heat exchange operation between refrigerant and outdoor air. The outdoor heat exchanger may include a refrigerant tube that guides refrigerant therethrough, and one or more fins coupled to the refrigerant tube. One face of each of the fins may be coated with a water repellent coating material and another face thereof may be coated with a hydrophilic coating material. An area coated with the water repellent coating material may be greater than an area coated with the hydrophilic coating material.
Abstract:
A heat exchanger according to the present disclosure includes: a heat transfer tube configured to guide a refrigerant; and a plurality of fins each having a through-hole through which the heat transfer tube is vertically installed, the plurality of fins being spaced apart from each other to allow air to pass in a first direction, wherein each of the plurality of fins includes: a corrugated portion formed in a zigzag shape in the first direction; a sheet portion disposed to surround the through-hole; and a connecting portion configured to connect the sheet portion and the corrugated portion, and wherein an inclined contact point, which is the highest position of the connecting portion and the corrugated portion, is located lower than a valley portion contact point, which is the lowest position of the connecting portion and the corrugated portion in a second direction perpendicular to the first direction. Thus, by controlling an angle of a contact point, which is an air stagnation section between a sheet portion through which a through-hole passes and a corrugated portion, the mixing of air passing through the sheet portion and air passing through an inclined portion may be facilitated. In addition, as a coordinate of a contact point, which is the highest point of an inclined portion between the sheet portion and the corrugated portion, is limited within a predetermined range, the flow of air may be induced without causing stagnation to thereby improve the heat transfer performance.
Abstract:
A heat exchanger and a method of manufacturing the same are provided. With the method, a tube may be inserted into a through hole formed in at least one fin coated with a filler metal, and the tube and a fin collar of the at least one fin may be joined through the filler metal by a brazing processing. A flange may not be formed on or at a top of the at least one fin collar, which protrudes vertically from a central longitudinal plane of the at least one fin. The tube may be made of aluminum (Al), and an interval between an outer circumferential surface of the tube and an inner circumferential surface of the fin collar of the at least one fin may be approximately 0.1 mm or less. Accordingly, contact resistance occurring when fabricating a fin-tube heat exchanger using a mechanical tube expansion method may be reduced, and heat transfer performance of the heat exchanger may be improved because grooves formed within the tube may not be deformed.