Abstract:
A liquid crystal display, and a method of manufacturing thereof, includes providing a substrate; depositing sequentially a first metal layer and a first insulating layer on the substrate; patterning the first metal layer and the first insulating layer using a first mask to form a gate line and a first gate insulating layer; depositing sequentially a second gate insulating layer, a pure semiconductor layer, a doped semiconductor layer and a second metal layer over the whole substrate; patterning the second metal layer using a second mask to form a data line, source and drain electrodes, a capacitor electrode, the capacitor electrode overlapping a portion of the gae line; etching the doped semiconductor layer between the source and drain electrodes to form a channel region; depositing a third insulating layer over the whole substrate; patterning the third insulating layer using a third mask to form a passivation film, the passivation film having a smaller width than the data line and covering the source and drain electrodes and exposing a portion of the drain electrode and the capacitor electrode; depositing a transparent conductive material layer over the whole substrate; and patterning the transparent conductive material layer using a fourth mask to pixel electrode, the pixel electrode contacting the drain electrode.
Abstract:
The present invention discloses an array substrate for an active-matrix LCD device and a method of fabricating the same. The array substrate reduces the number of masks used in the fabrication process so that reliability is enhanced and the cost is reduced over the conventional device and method.
Abstract:
A thin-film transistor includes a substrate, and a gate including a double-layered structure having first and second metal layers provided on the substrate, the first metal layer being wider than the second metal layer by 1 to 4 nullm. A method of making such a thin-film transistor includes the steps of: depositing a first metal layer on a substrate, depositing a second metal layers directly on the first metal layer; forming a photoresist having a designated width on the second metal layer; patterning the second metal layer via isotropic etching using the photoresist as a mask; patterning the first metal layer by means of an anisotropic etching using the photoresist as a mask, the first metal layer being etched to have the designated width, thus forming a gate having a laminated structure of the first and second metal layers; and removing the photoresist.