Abstract:
An etchant and a method for fabricating a substrate for an electronic device using the etchant where the etchant contains a predetermined additive to control the etch rate of a Cu deposition layer (containing Cu, Cu/Ti, or Cu/Ta) over passage of time. Some examples of the additive may include a chelate having the nullCOOH group, a chemical compound containing a Cu ion, and a deoxidizer containing sulfur (S). The method includes forming a metal thin film containing copper (Cu) on a substrate, selectively exposing the metal thin film, and etching at least one of the exposed and the unexposed portions on the metal thin film with the additive-containing etchant to control the Cu etch rate over time against the number of sheets of processed substrates. The use of the additive-containing etchant results in improved yield and reduction in production costs because of less frequent etchant replacements.
Abstract:
An array substrate for a liquid crystal display device includes a transparent substrate, a gate line arranged along a first direction on the transparent substrate, a gate electrode extending from the gate line, a common line arranged along the first direction adjacent to the gate line and having a protrusion, a gate insulation layer on the transparent substrate to cover the gate line, the gate electrode, and the common electrode, an active layer on the gate insulation layer and over the gate electrode, first and second ohmic contact layers on the active layer, a data line arranged along a second direction perpendicular to the first upon the gate insulation layer, a source electrode extending from the data line and contacting the first ohmic contact layer, a drain electrode spaced apart from the source electrode and contacting the second ohmic contact layer, a first capacitor electrode formed on the gate insulation layer and connected to the drain electrode, the first capacitor electrode overlapping the common line and the protrusion of the common line, a passivation layer formed on the gate insulation layer to cover the data line, the source and drain electrodes, and the first capacitor electrode, the passivation layer having a first contact hole exposing a portion of the capacitor electrode, and a pixel electrode formed on the passivation layer and contacting the first capacitor electrode through the first contact hole.
Abstract:
A method and device for driving a liquid crystal panel to display at least two pictures having different resolutions from each other. The method and device discriminate regions of images having different resolution from each other in an image signal to be applied to the liquid crystal panel. In the next. Also, the method and device adjust adjusting a brightness to be different difference in accordance with the images of the different resolutions.