Abstract:
A method and apparatus for the photo-acoustic identification and quantification of one or more analyte species present in a gaseous or liquid medium in low concentration utilizing a laser and a resonant optical cavity containing the medium and having within the cavity at least two partially transparent mirrors, one of which is a cavity coupling mirror and one of which is moveably mounted on an assembly responsive to an input signal.
Abstract:
Cavity enhanced absorption spectroscopy systems and methods for detecting trace gases. When the frequency of laser light approaches the frequency of a resonance cavity mode, the laser begins to fill the cavity to that mode. Optical intensity inside the cavity reflects total cavity loss when the laser light frequency coincides with the cavity mode transmission peak. The intra-cavity optical power also depends on the coupling efficiency of the laser beam to the particular cavity mode. Measurement of intensities of three optical signals, namely, intensity of the light incident on to the cavity, intensity of the light reflected from the cavity, and intensity of the intra-cavity optical power, with their appropriate normalization advantageously significantly reduce effects of baseline calibration and drift as the normalized signal only depends on total cavity loss, and not the coupling efficiency, as in traditional approaches.
Abstract:
Laser-based spectroscopy systems and methods including a laser source that emits a beam of radiation, an optical resonant cavity having at least two cavity mirrors, and at least one beam filtering element positioned along a path of the beam external to the cavity and having a front surface, wherein the front surface is oriented such that an intersection of the beam and the surface is at an angle, such as the Brewster's angle or a pseudo-Brewster's, that reduces or eliminates reflection of a predominant polarization component of the beam by the filtering element.
Abstract:
Systems and methods for detecting trace gases utilize a resonance optical cavity and a coherent light source coupled to the cavity through a cavity coupling mirror. The cavity is constructed of a material having the same or a similar coefficient of thermal expansion as the mirror elements defining the cavity. The main (bulk) cavity material may be the same as the main (bulk) material that forms the mirror elements, or it may be different. Such resonant cavity configurations provide improved accuracy and stability as compared to existing cavity configurations based upon similar principles.
Abstract:
A method and apparatus for the photo-acoustic identification and quantification of one or more analyte species present in a gaseous or liquid medium in low concentration utilizing a laser and a resonant optical cavity containing the medium and having within the cavity at least two partially transparent mirrors, one of which is a cavity coupling mirror and one of which is moveably mounted on an assembly responsive to an input signal.
Abstract:
A method and apparatus for the photo-acoustic identification and quantification of one or more analyte species present in a gaseous or liquid medium in low concentration utilizing a laser and a resonant optical cavity containing the medium and having within the cavity at least two partially transparent mirrors, one of which is a cavity coupling mirror and one of which is moveably mounted on an assembly responsive to an input signal.
Abstract:
Systems and methods for measuring the isotope ratio of one or more trace gases and/or components of gas mixtures such as different gas species present in a gas mixture. The system includes a resonant optical cavity having two or more mirrors and containing a gas, the cavity having a free spectral range that equals the difference between frequencies of two measured absorption lines of different gas species in the gas, or of two different isotopes, divided onto an integer number. The system includes a continuous-wave tunable laser optically coupled with the resonant optical cavity and a detector system for measuring an absorption of laser light by the gas in the cavity. The detector system includes a photo-detector to measure an intensity of the intra-cavity light, or both a photo-acoustic sensor to measure photo-acoustic waves generated in the cavity and a photo-detector to measure an intensity of the intra-cavity light.