Abstract:
An analyte meter having a test strip port is configured to transmit an electric signal through a received test strip with a sample. A pair of electrodes apply the electric signal and receive an electrical response from the test strip. A processing unit analyzes the electrical response and uses the response to determine an analyte level of the sample.
Abstract:
Various embodiments for a method that allow for a more accurate analyte concentration with a biosensor by determining at least one physical characteristic of the sample containing the analyte and deriving a parameter relating to the biosensor to attain accurate glucose concentration.
Abstract:
An analytical test strip for the determination of an analyte (such as glucose and/or hematocrit) in a bodily fluid sample (such as a whole blood sample) includes a first capillary sample-receiving chamber, a second capillary sample-receiving chamber, and a physical barrier island disposed between the first and second capillary sample-receiving chambers. Moreover, the physical island barrier is disposed such that bodily fluid sample flow between the first capillary sample-receiving chamber and the second capillary sample-receiving chamber is prevented during use of the analytical test strip.
Abstract:
A hand-held test meter for use with an electro-chemical-based analytical test strip in the determination of an analyte in a bodily fluid sample includes a housing; a strip port connector disposed at least partially within the housing and configured to receive an electro-chemical based analytical test strip; a micro-controller disposed in the housing and configured to generate a micro-controller command signal; an electrode bias drive circuit block disposed in the housing and configured to generate a bias drive signal based on the micro-controller command signal, and a dynamic bias drive adjustment circuit block disposed in the housing and configured to receive at least one sensed electrode voltage and to adjust a bias drive signal from the electrode bias drive circuit block based on the sensed electrode voltage to create an adjusted bias drive signal.
Abstract:
Various embodiments for a method that allow for a more accurate analyte concentration with a biosensor by determining at least one physical characteristic signal representative of the sample containing the analyte and selecting an analyte measurement sampling time based on measured temperature, physical characteristic and estimated analyte values.
Abstract:
Various embodiments for a method that allow for a more accurate analyte concentration with a biosensor by determining at least one physical characteristic signal representative of the sample containing the analyte and selecting an analyte measurement sampling time based on measured temperature, physical characteristic and estimated analyte values along with temperature compensations provided for specific parameters used in the test assay.
Abstract:
Various embodiments for methods and systems that allow for a more accurate analyte concentration with a biosensor by determining at least one physical characteristic of the sample containing the analyte and deriving one of a batch slope, sampling time, or combinations thereof to attain accurate glucose concentration.
Abstract:
A system and a method for correcting an analyte concentration measurement taken by a test strip is described herein. The test strip includes at least two spaced apart electrodes defining an electrochemical cell or reaction chamber. An initial polarization parameter of the test strip is determined at the time of test strip manufacture and a testing polarization parameter is determined at the time of testing. A resulting correction factor is then determined based on the initial and testing polarization parameters. The correction parameter can be applied to a measured analyte concentration in order to correct the measured analyte concentration.
Abstract:
A hand-held test meter for use with an electrochemical-based analytical test strip in the determination of an analyte in a bodily fluid sample includes a housing (110), a micro-controller (112) disposed in the housing, an operating range test strip simulation circuit block (“ORTSSCB” 114) disposed in the housing and a strip port connector (“SPC” 106) configured to operationally receive an electrochemical-based analytical test strip. The ORTSSCB is in electrical communication with the SPC. In addition, the ORTSSCB is configured to simulate an electrochemical-based analytical test strip inserted into the SPC and an operating range of bodily fluid samples applied to such an electrochemical-based analytical test strip by sequentially presenting a plurality of electrical loads. Each of the plurality of electrical loads is configured as a first resistor in series with a parallel configuration of a second resistor and a first capacitor. Moreover, the SPC is configured in electrical communication with the micro-controller.
Abstract:
An analytical test strip for the determination of an analyte (such as glucose) in, or a characteristic of, a bodily fluid sample includes an electrically-insulating base layer, a first patterned spacer layer disposed on the electrically-insulating base layer, a second patterned spacer layer disposed on the first patterned spacer layer; and a top hydrophilic layer disposed on the second patterned spacer layer. In addition, the electrically-insulating base layer, the first and second patterned spacer layers and the top hydrophilic layer define a tiered capillary chamber(s) that has a first tiered capillary chamber portion defined in the first patterned spacer layer and a second tiered capillary chamber portion defined in the second patterned spacer layer. Moreover, the first tiered capillary chamber portion and the second tiered capillary chamber portion are in direct fluidic communication with one another.