Abstract:
Aspects of the disclosure relate to the combination and display of both live and non-live patient images. The features described include collecting angiographic image data, and correlating angiographic image frames to time-varying data relating to the patient's heart cycle. This time -varying data may then be compared with the patient's live heart cycle data so that the collected angiographic image frames can be interlaced within a display of live fluoroscopic images of the patient.
Abstract:
In part, the disclosure relates to intravascular data collection systems and the software-based visualization and display of intravascular data relating to detected side branches and detected stent struts. Levels of stent malapposition can be defined using a user interface such as a slider, toggle, button, field, or other interface to specify how indicia are displayed relative to detected stent struts. In addition, the disclosure relates to methods to automatically provide a two or three-dimensional visualization suitable for assessing sidebranch and/or guide wire location during stenting. The method can use one or more a computed side branch location, a branch takeoff angle, one or more stent strut locations, and one or more lumen contours.
Abstract:
Aspects of the disclosure provide for methods, systems, and apparatuses, including computer-readable storage media, for lipid detection by identifying fibrotic caps in medical images of blood vessels. A method includes receiving one or more input images of a blood vessel and processing the one or more input images using a machine learning model trained to identify locations of fibrotic caps in blood vessels. The machine learning model is trained using a plurality of training images each annotated with locations of one or more fibrotic caps. A method includes identifying and characterizing fibrotic caps of lipid pools based on differences in radial signal intensities measured at different locations of an input image. A system can generate one or more output images having segments that are visually annotated representing predicted locations of fibrotic caps covering lipidic plaques.
Abstract:
In part, the disclosure relates to method of displaying a representation of an artery. The method may include storing an intravascular image dataset in a memory device of a diagnostic imaging system, the intravascular image dataset generated in response to intravascular imaging of a segment of an artery; automatically detecting lumen boundary of the segment on a per frame basis; automatically detecting EEL and displaying a stent sizing workflow. In part, the disclosure also relates to automatically detecting one or more regions of calcium relative to lumen boundary of the segment; calculating an angular or circumferential measurement of detected calcium for one or more frames; calculating a calcium thickness of detected calcium for one or more frames; and displaying the calcium thickness and the angular or circumferential measurement of detected calcium for a first frame of the one or more frames.
Abstract:
In part, the disclosure relates to computer-based methods, devices, and systems suitable for pre-stent planning, stent planning and post-stent planning using one or more computing devices. In one embodiment, a method generates one or more stent profiles, such as a target stent profile, that are user configurable during a pre-stent planning stage by selecting one or more frames. The method performs a comparative analysis of the previously set target stent profile relative to a vessel lumen region post stent deployment. The method and related user interfaces can alert a user to move, remove, reposition, or inflate a stent. The location of jailed side branches can also be identified and displayed based upon the comparative analysis. Parameters that change based on the outcome of the stent deployment can be displayed in terms of the predicted parameter value and the value that is measured or determined after stent deployment.
Abstract:
Systems and methods are disclosed for identifying features of a blood vessel using extravascular and intravascular images in order to estimate a virtual flow reserve (VFR) of the imaged blood vessel. Aspects of the disclosure include using extravascular images to estimate the size of the blood vessel in regions that have not been intravascularly imaged. The VFR estimation may be based on a resistance model that incorporates both the intravascular image data and the estimated blood vessel size. In other aspects, multiangled extravascular images are captured and analyzed in order to identify the size and orientation of branch vessels.
Abstract:
The present disclosure provides systems and methods for automatically aligning intravascular data taken during a plurality of pullbacks in a target blood vessel. Extraluminal images may be taken to determine the location of the guide catheter in the target vessel. Two or more pullbacks may then be performed in the target vessel. The start and end point of each pullback may be determined. A distance between the end point of each pullback and the proximal tip, or junction point, of the guide catheter may be determined. A difference between the end point of each pullback and the junction point may be determined. The difference between the distances from the end of the pullback and the junction point may correspond to the distance to offset one of the representations of the pullbacks in order to automatically align the representation of the pullbacks.
Abstract:
The present disclosure provides systems and methods for determining a mean transit time of a bolus within the blood vessel by passing the bolus through the blood vessel while an intravascular imaging probe is held stationary. The probe may collect a plurality of image frames as the bolus passes the probe. The cross-sectional area of the bolus within the images frames may be determined by segmenting each image frame by thresholding, creating a vessel mask, and creating a contrast mask by applying an element-wise AND operator to the thresholded image and the vessel mask. The cross- sectional area of the bolus for the image frames may be plotted on an area dilution curve. Various fits may be applied to and various points may be identified on the area dilution curve. The various fits and points may be used to determine the mean transit time.
Abstract:
The present disclosure provides systems and methods to receiving OCT or IVUS image data frames to output one or more representations of a blood vessel segment. The image data frames may be stretched and/or aligned using various windows or bins or alignment features. Arterial features, such as the calcium burden, may be detected in each of the image data frames. The arterial features may be scored. The score may be a stent under-expansion risk. The representation may include an indication of the arterial features and their respective score. The indication may be a color coded indication.
Abstract:
In part, the disclosure relates to systems and methods to assess stent / scaffold expansion in a vessel on an expedited time scale after stent / scaffold placement and expansion. In one embodiment, the method generates a first representation of a stented segment of the blood vessel indicative of a level of stent expansion; determines using the detected stent struts, a first end of the stent and a second end of the stent; and generate a second representation of the segment of the blood vessel by interpolating a lumen profile using an offset distance from the first end and the second end.