Abstract:
In part, the disclosure relates to computer-based methods, devices, and systems suitable for detecting a delivery catheter using intravascular data. In one embodiment, the delivery catheter is used to position the intravascular data collection probe. The probe can collect data suitable for generating one or more representations of a blood vessel with respect to which the delivery catheter can be detected.
Abstract:
The disclosure relates, in part, to computer-based visualization of stent position within a blood vessel. A stent can be visualized using intravascular data and subsequently displayed as stent struts or portions of a stent as a part of a one or more graphic user interface(s) (GUI). In one embodiment, the method includes steps to distinguish stented region(s) from background noise using an amalgamation of angular stent strut information for a given neighborhood of frames. The GUI can include views of a blood vessel generated using distance measurements and demarcating the actual stented region(s), which provides visualization of the stented region. The disclosure also relates to display of intravascular diagnostic information such as indicators. An indicator can be generated and displayed with images generated using an intravascular data collection system. The indicators can include one or more viewable graphical elements suitable for indicating diagnostic information such as stent information.
Abstract:
In part, the disclosure relates to intravascular data collection systems and angiography systems and the exchange of data between two or more of the foregoing and the generation and display of diagnostic information such as indicators. One or more indicators can be generated and displayed such as by overlaying or otherwise combining such indicators with images generated using an intravascular data collection system. The indicators can include longitudinal, cross-sectional, and other indictor types such as one more indicator or graphical elements suitable for indicating diagnostic information of interest. Indicators can be used to guide a user during stent delivery planning and other actions. The disclosure also relates to stent detection and shadow detection in the context of intravascular data sets obtained using a probe such as, for example, and optical coherence tomography probe or an intravascular ultrasound probe.
Abstract:
In part, the disclosure relates to computer-based methods, devices, and systems suitable for detecting a delivery catheter using intravascular data. In one embodiment, the delivery catheter is used to position the intravascular data collection probe. The probe can collect data suitable for generating one or more representations of a blood vessel with respect to which the delivery catheter can be detected.
Abstract:
The disclosure relates to stent detection and shadow detection in the context of intravascular data sets obtained using a probe such as, for example, and optical coherence tomography probe or an intravascular ultrasound probe.
Abstract:
The disclosure relates, in part, to computer-based visualization of stent position within a blood vessel. A stent can be visualized using intravascular data and subsequently displayed as stent struts or portions of a stent as a part of a one or more graphic user interface(s) (GUI). In one embodiment, the method includes steps to distinguish stented region(s) from background noise using an amalgamation of angular stent strut information for a given neighborhood of frames. The GUI can include views of a blood vessel generated using distance measurements and demarcating the actual stented region(s), which provides visualization of the stented region. The disclosure also relates to display of intravascular diagnostic information such as indicators. An indicator can be generated and displayed with images generated using an intravascular data collection system. The indicators can include one or more viewable graphical elements suitable for indicating diagnostic information such as stent information.