Abstract:
초음속기체소용돌이내에생성된충격파를이용하여화학반응및/또는분쇄를촉진하도록구성된반응기에다양한내마모성설계가적용될수 있다. 반응기는실질적으로원형인횡단면을가지는강성챔버를포함할수 있다. 제1 기체유입구는고속기체스트림을챔버내로도입하도록구성될수 있다. 제1 교체가능마모부분이챔버내에배치되어, 기체스트림에의해서유발되는마모충격을흡수할수 있다. 일부구현예에서, 제1 교체가능마모부분은챔버내로계속적으로공급되는원통형막대일수 있다. 일부구현예에서, 제1 교체가능마모부분은촉매재료로코팅되거나촉매재료로구성될수 있고, 및/또는반응기의나머지로부터전기적으로절연될수 있다. 일부구현예에서, 기체스트림을챔버내의희망지역으로조향하여마모충격을균일화하도록, 제2 기체유입구가배치될수 있다.
Abstract:
기체반응기시스템은초음속기체소용돌이내에형성되는충격파를이용하여기체의화학반응을촉진하도록구성될수 있다. 시스템은가열기및/또는반응기에기체를제공하기위한기체공급원을포함할수 있다. 반응기는초음속기체소용돌이내에서생성되는충격파를이용하여기체의화학반응을촉진하도록구성될수 있다. 반응기는기체의고속스트림을반응기의챔버내로도입하기위해서기체유입구와함께배열될수 있다. 기체유입구는챔버내에서초음속순환기체의소용돌이를일으킬수 있다. 소용돌이는챔버의길이방향축을중심으로초음속으로회전될수 있다. 시스템은반응기와유체연통되는저장탱크내에서반응기의출력생성물을저장하도록구성될수 있다.
Abstract:
Solid materials may be processed using shockwaves produced in a supersonic gaseous vortex. A high-velocity stream of gas may be introduced into a reactor. The reactor may have a chamber, a solid material inlet, a gas inlet, and an outlet. The high-velocity stream of gas may be introduced into the chamber of the reactor through the gas inlet. The high-velocity stream of gas may effectuate a supersonic gaseous vortex within the chamber. The reactor may be configured to facilitate chemical reactions and/or comminution of solid feed material using tensive forces of shockwaves created in the supersonic gaseous vortex within the chamber. Solid material may be fed into the chamber through the solid material inlet. The solid material may be processed within the chamber by nonabrasive mechanisms facilitated by the shockwaves within the chamber. The processed material that is communicated through the outlet of the reactor may be collected.
Abstract:
Various wear resistance designs may be applied to a reactor configured to facilitate chemical reactions, and/or comminution using shockwaves created in a supersonic gaseous vortex. The reactor may include a rigid chamber having a substantially circular cross-section. A first gas inlet may be configured to introduce a high-velocity gas stream into the chamber. A first replaceable wear part may be disposed in the chamber to absorb wear impact caused by the gas stream. In some implementations, the first replaceable wear part may be a cylindrical rod continuously fed into the chamber. In some implementations, the first replaceable wear part may be coated with, or composed of, a catalytic material, and/or may be electrically isolated from the rest of the reactor. In some implementations, a second gas inlet may be disposed to steer the gas stream to a desired area within the chamber to even out the wear impact.
Abstract:
SYSTEMS AND METHODS FOR GENERATING STEAM BY CREATING SHOCKWAVES IN A SUPERSONIC GASEOUS VORTEX Steam (102) may be generated using an apparatus (104) that creates shockwaves in a supersonic gaseous vortex. The apparatus (104) includes a chamber (200) configured to receive, pressurize, and heat fuel gas and/or oxygen containing gas. One or more inlets (122, 132, 142) positioned at a first end of the chamber (200) and arranged to emit fuel gas, oxygen containing gas, or water as one or more jet streams tangentially to an internal surface of the chamber (200) may create a gaseous vortex rotating about a longitudinal axis within the chamber (200). The inlet(s) (122, 132, 142) may include one or more inlet nozzles structured to accelerate the one or more fuel gas, oxygen-containing gas, or water to a supersonic velocity and adjustably control frequency of shockwaves emitted into the gaseous vortex. Water can be injected into the chamber (200) to stabilize internal chamber temperature where it may be converted into steam (102). An outlet (152) may be configured to emit product gases and/or steam (102) from the chamber (200).
Abstract:
Various wear resistance designs may be applied to a reactor configured to facilitate chemical reactions, and/or comminution using shockwaves created in a supersonic gaseous vortex. The reactor may include a rigid chamber having a substantially circular cross-section. A first gas inlet may be configured to introduce a high-velocity gas stream into the chamber. A first replaceable wear part may be disposed in the chamber to absorb wear impact caused by the gas stream. In some implementations, the first replaceable wear part may be a cylindrical rod continuously fed into the chamber. In some implementations, the first replaceable wear part may be coated with, or composed of, a catalytic material, and/or may be electrically isolated from the rest of the reactor. In some implementations, a second gas inlet may be disposed to steer the gas stream to a desired area within the chamber to even out the wear impact.
Abstract:
Un sistema para procesar materiales sólidos, el sistema comprende: un alimentador de material sólido; un reactor que tiene una cámara, una entrada de material sólido, una entrada de gas y una salida, el reactor se configura para facilitar las reacciones químicas y/o la trituración del material de alimentación sólido mediante el uso de fuerzas de tensión de ondas de choque creadas en un vórtice gaseoso supersónico dentro de la cámara, el alimentador de material sólido se configura para proporcionar material sólido a la cámara del reactor a través de la entrada de material sólido, el material sólido se procesa dentro de la cámara mediante mecanismos no abrasivos facilitados por las ondas de choque dentro de la cámara, la salida se configura para efectuar un enfriamiento rápido del material sólido procesado que sale del reactor para reducir la aparición de reacciones inversas; una fuente de gas configurada para introducir una corriente de gas a alta velocidad en la cámara del reactor a través de la entrada de gas para efectuar el vórtice gaseoso supersónico dentro de la cámara, en donde la entrada de gas incluye una boquilla de entrada dispuesta dentro de la entrada de gas, la boquilla de entrada se configura para emitir ondas de choque en la corriente de gas de alta velocidad introducida por la fuente de gas por lo que la corriente de gas de alta velocidad se emite hacia dentro de la cámara a una velocidad supersónica; y un almacenamiento configurado para recoger material procesado que se comunica a través de la salida del reactor.