Abstract:
Systems and methods are disclosed herein that include providing an active torsion damper control system that includes a rotatable component (206) and a rotatable measurement interface (302) disposed on the rotatable component, the rotatable measurement interface having at least one torsional strain gauge configured to measure a strain of the rotatable component, a torque management (306) computer configured to determine a resonant frequency of the rotatable component and a corrective torque needed to be applied to the rotatable component to excite the resonant frequency as a function of the measured strain, and a correction motor (308) configured to impart the corrective torque on the rotatable component.
Abstract:
Active noise and vibration control (ANVC) systems and methods are provided. The systems and methods include providing sensors configured to detect vibration of a structure and a controller in electrical communication with the sensors. The controller includes a hardware processor and a memory element configured to process the vibration detected by the sensors, generate a force control command signal, and output the force control command signal via an interface. The systems and methods include provisions for at least one circular force generator (CFG) in electrical communication with the controller, the CFG is configured to execute the force control command signal output from the controller and produce a force that substantially cancels the vibration force. In some aspects, one or more CFGs control different vibration frequencies causing unwanted vibrations or acoustical tones. In some aspects, one or more CFG's control unwanted vibrations during some conditions and noise during other conditions.
Abstract:
A pumping system includes an output conduit associated with an output of a positive displacement pump, a first sensor configured to measure a fluid flow characteristic (FFC) within the output conduit, a second sensor configured to measure a phase of the positive displacement pump, a feedforward active controller configured to receive information related to the FFC, receive information related to the phase of the positive displacement pump, and determine an FFC variability value, and a first fluid flow normalizer (FFN) configured to at least one of add fluid to the output of the positive displacement pump and remove fluid from the output of the positive displacement pump in response to a signal from the feedforward active controller.
Abstract:
A method and system/apparatus implementing a non-model based Decentralized Feedforward Adaptive Algorithm (DFAA) for active vibration control of an actively-driven element, such as an Active Vibration Absorber (AVA) (24). The AVA (24) preferably includes an inertial tuning mass (42) and a voice coil assembly (46) and is contained in an active vibration control system (20) wherein the method and system/apparatus reduce vibration of a vibrating member (22) at an attachment point (26) by receiving an error signal from an error sensor (28) such as an accelerometer and a reference signal from a tachometer (32) or accelerometer (34), where the reference signal is correlated to, or indicative of the frequency content of, a primary vibration source (36) and calculating an updated output signal via an electronic controller (39) using the non-model based DFAA to dynamically drive the actively-driven element, such as AVA (24). The method and system/apparatus using DFAA is effective for reduction of both tonal and broadband vibration. The method approaches the performance of Filtered-x LMS control, yet is decentralized and does not require information regarding the plant.
Abstract:
Systems and methods are disclosed herein that include providing a service life monitoring system that includes a rotatable component and a rotatable measurement interface disposed on the rotatable component, the rotatable measurement interface having at least one torsional strain gauge configured to measure a strain of the rotatable component, a strain monitor controller configured to receive the measured strain of the rotatable component, and a wireless data transmission component configured to wirelessly communicate with the strain monitor controller to receive the measured strain, determine at least one of a power, rotational speed, torque, and service life of the rotatable component in response to receiving the measured strain of the rotatable component as a result of the measured strain of the rotatable component, and control at least one of the power, the rotational speed, and the torque of the rotatable component.
Abstract:
The land vehicle includes a body, a power plant and a plurality of land engagers, the land engagers for engaging land and propelling the land vehicle across land. The land vehicle includes a controllable suspension system, the controllable suspension system for controlling suspension movements between the body and the land engagers. The land vehicle includes a computer system and suspension sensors located proximate the land engagers for measuring suspension parameters representative of suspension movements between the body and the land engagers and outputting a plurality of suspension sensor measurement outputs. The land vehicle includes controllable force suspension members located proximate the land engagers and the suspension sensors, the controllable force suspension members applying suspension travel forces between the body and the land engagers to control the suspension movements. The land vehicle computer system includes a controllable suspension system algorithm for controlling the controllable force suspension members to control vehicle body motion and the suspension movements between the body and the land engagers, and a health usage monitoring algorithm for monitoring sensors and assessing a health and a usage of the vehicle and its suspension components.
Abstract:
A vibration control apparatus (20, etc.) and method for a calender (18, etc.) for controlling vibration between two or more rolls (ex. 22, 24, etc.) which controls vibration induced thickness variations in a medium (27) exiting from the nip. The apparatus (20, etc.) includes a frame (19, etc.), a first and second rolls (22, 24, etc.) mounted relative to the frame, and a force generator (32, etc.), such as an electro-mechanical active actuator, servo-hydraulic actuator, controllable semi-active damper, Active Vibration Absorber (AVA), or Adaptive Tuned Vibration Absorber (ATVA), provides cancelling forces to control vibration between the first and second roll (22, 24, etc.) thereby, controlling such vibration induced thickness variations in the medium (27). Preferably, the apparatus includes at least one sensor (ex. 42, 42', 42", 42''', etc.) for providing a signal representative of a vibration condition of at least one of the first or second roll (22, 24, etc.), and preferably both, and a digital controller (50, etc.) for processing the signal representative of said vibration condition preferably according to a feed-forward-type control and providing a control signal to a force generator (32, etc.). Vertical and/or lateral vibration of the rolls (22, 24, etc.) may be controlled simultaneously. Likewise, fundamental vibrational frequencies and their harmonics may be controlled individually, or in combination.
Abstract:
A hybrid active-passive system (20) for reducing noise within a passenger compartment and vibration of a fuselage of a vehicle, such as an aircraft (turboprop, turbofan, or helicopter). The hybrid active-passive system (20) includes, in combination an active acoustic producer such as a loudspeaker (35), Active Vibration Absorber (AVA) (34), or active absorber assembly (39) for producing antinoise within the compartment (42), and a passive resonant device, such as a passive Tuned Vibration Absorber (TVA) (36), or passive TVA assembly (37) for controlling vibration of the fuselage or structural supports interconnecting the disturbance source (e.g. power plants (26), propellers (28a), gearbox (57), main rotor (28m), tail rotor (28t)) and the fuselage wall (25).
Abstract:
An Active Structural Control (ASC) system (10) and method which includes a plurality of Active Vibration Absorbers (AVAs) (40) attached to a yoke (32) included within a pylon structure (28) preferably comprising a spar (38) and a yoke (32) which is located intermediate between an aircraft fuselage (20) and an aircraft engine (18) for controlling acoustic noise and/or vibration generated within the aircraft's cabin (44) due to unbalances in the aircraft engine (18). The ASC system (10) includes a plurality of error sensors (42 or 63) for providing error signals, and at least one reference sensor (49 or 50) for providing reference signals indicative of the N1 and/or N2 engine rotations and/or vibrations, and a preferably digital electronic controller (46) for processing the error and reference signal information to provide output signals to dynamically vibrate the plurality of AVAs (40) attached to the yoke (32). The AVAs (40) preferably act in a radial, tangential, or fore and aft directions and may be located at the terminalend and/or at the base portion of the yoke (32). Further, the AVAs (40) may be Single Degree Of Freedom (SDOF) or Multiple Degree Of Freedom (MDOF) and may be tuned to have a passive resonance which substantially coincides with the N1 and/or N2 engine rotation and/or vibrations. In another aspect, reference signal processing is described which includes a modulo counter, a lookup table, and a digital IO device.
Abstract:
Systems and methods are disclosed herein that include providing a service life monitoring system that includes a rotatable component and a rotatable measurement interface disposed on the rotatable component, the rotatable measurement interface having at least one torsional strain gauge configured to measure a strain of the rotatable component, a strain monitor controller configured to receive the measured strain of the rotatable component, and a wireless data transmission component configured to wirelessly communicate with the strain monitor controller to receive the measured strain, determine at least one of a power, rotational speed, torque, and service life of the rotatable component in response to receiving the measured strain of the rotatable component as a result of the measured strain of the rotatable component, and control at least one of the power, the rotational speed, and the torque of the rotatable component.