-
公开(公告)号:AT218779T
公开(公告)日:2002-06-15
申请号:AT00301577
申请日:2000-02-28
Applicant: LUCENT TECHNOLOGIES INC
Inventor: LAROIA RAJIV , LI JUNYI , VANDERVEEN MICHAELA CATALINA
Abstract: A base station within a cell of an orthogonal frequency division multiplexing (OFDM) based spread spectrum multiple access system employs sectorization as a way to reduce the intercell interference. The cell is sectorized from a transmission point of view by the directionality of the downlink antenna, and the OFDM tone set employed in each cell is correspondingly sectorized, i.e., each sector in the cell is allocated a set of tones within a sub-band of the available frequency bandwidth for use when transmitting into that sector. The sub-bands assigned to each sector are periodically changed, or "hopped", among the available sub-bands within the totally available bandwidth. Such sub-band hopping is a so-called "slow" hopping, in that it is not performed on a symbol-by-symbol basis but instead occurs only after more than one symbol has been transmitted in a sector on tones within the sub-band. Each sector employs its own pilot signal, which is assigned one or more tones within the sub-band currently employed by that sector. Similarly, for the uplink, the base station may employ a directional receiver antenna. Preferably, the mobile terminal only transmits on a tone that is within a sub-band that is allocated to the sector in which the mobile terminal is located. This, sub-band, however, need not correspond to the same location within the bandwidth as the sub-band used by the downlink to communicate with the mobile terminal.
-
公开(公告)号:DE60000096D1
公开(公告)日:2002-05-02
申请号:DE60000096
申请日:2000-02-28
Applicant: LUCENT TECHNOLOGIES INC
Inventor: LAROIA RAJIV , LI JUNYI , VANDERVEEN MICHAELA CATALINA
Abstract: In an orthogonal frequency division multiplexing (OFDM) based spread spectrum multiple access system the entire bandwidth is divided into orthogonal tones, and all of the orthogonal tones are reused in each cell. To reduce peak-to-average ratio at the mobile transmitter, each voice user is allocated preferably a single one, but no more than a very small number, of the orthogonal tones for use in communicating with the base station. Data users are similarly allocated tones for data communication, however, the number of tones assigned for each particular data user is a function of the data rate for that user. The tone assignment for a given user is not always the same within the available band, but instead the tones assigned to each user are hopped over time. More specifically, in the downlink, the tones assigned to each user are change relatively rapidly, e.g., from symbol to symbol, i.e., the user fast "hops" from one tone to another. However, in the uplink, preferably slow hopping is employed to allow efficient modulation of the uplink signal which necessitates the employing of additional techniques, such as interleaving, to compensate for the reduction in the intercell interference averaging effect. For data communication power control is employed in the uplink and/or downlink so that the transmission rate is increased, e.g., by increasing the number of symbols transmitted per tone per unit time or the coding rate, as a function of allocated power per tone and the corresponding channel attenuation.
-
公开(公告)号:DE60000193T2
公开(公告)日:2002-12-12
申请号:DE60000193
申请日:2000-02-28
Applicant: LUCENT TECHNOLOGIES INC
Inventor: LAROIA RAJIV , LI JUNYI , VANDERVEEN MICHAELA CATALINA
Abstract: A base station within a cell of an orthogonal frequency division multiplexing (OFDM) based spread spectrum multiple access system employs sectorization as a way to reduce the intercell interference. The cell is sectorized from a transmission point of view by the directionality of the downlink antenna, and the OFDM tone set employed in each cell is correspondingly sectorized, i.e., each sector in the cell is allocated a set of tones within a sub-band of the available frequency bandwidth for use when transmitting into that sector. The sub-bands assigned to each sector are periodically changed, or "hopped", among the available sub-bands within the totally available bandwidth. Such sub-band hopping is a so-called "slow" hopping, in that it is not performed on a symbol-by-symbol basis but instead occurs only after more than one symbol has been transmitted in a sector on tones within the sub-band. Each sector employs its own pilot signal, which is assigned one or more tones within the sub-band currently employed by that sector. Similarly, for the uplink, the base station may employ a directional receiver antenna. Preferably, the mobile terminal only transmits on a tone that is within a sub-band that is allocated to the sector in which the mobile terminal is located. This, sub-band, however, need not correspond to the same location within the bandwidth as the sub-band used by the downlink to communicate with the mobile terminal.
-
公开(公告)号:DE60000096T2
公开(公告)日:2002-10-31
申请号:DE60000096
申请日:2000-02-28
Applicant: LUCENT TECHNOLOGIES INC
Inventor: LAROIA RAJIV , LI JUNYI , VANDERVEEN MICHAELA CATALINA
Abstract: In an orthogonal frequency division multiplexing (OFDM) based spread spectrum multiple access system the entire bandwidth is divided into orthogonal tones, and all of the orthogonal tones are reused in each cell. To reduce peak-to-average ratio at the mobile transmitter, each voice user is allocated preferably a single one, but no more than a very small number, of the orthogonal tones for use in communicating with the base station. Data users are similarly allocated tones for data communication, however, the number of tones assigned for each particular data user is a function of the data rate for that user. The tone assignment for a given user is not always the same within the available band, but instead the tones assigned to each user are hopped over time. More specifically, in the downlink, the tones assigned to each user are change relatively rapidly, e.g., from symbol to symbol, i.e., the user fast "hops" from one tone to another. However, in the uplink, preferably slow hopping is employed to allow efficient modulation of the uplink signal which necessitates the employing of additional techniques, such as interleaving, to compensate for the reduction in the intercell interference averaging effect. For data communication power control is employed in the uplink and/or downlink so that the transmission rate is increased, e.g., by increasing the number of symbols transmitted per tone per unit time or the coding rate, as a function of allocated power per tone and the corresponding channel attenuation.
-
公开(公告)号:DE60000193D1
公开(公告)日:2002-07-11
申请号:DE60000193
申请日:2000-02-28
Applicant: LUCENT TECHNOLOGIES INC
Inventor: LAROIA RAJIV , LI JUNYI , VANDERVEEN MICHAELA CATALINA
Abstract: A base station within a cell of an orthogonal frequency division multiplexing (OFDM) based spread spectrum multiple access system employs sectorization as a way to reduce the intercell interference. The cell is sectorized from a transmission point of view by the directionality of the downlink antenna, and the OFDM tone set employed in each cell is correspondingly sectorized, i.e., each sector in the cell is allocated a set of tones within a sub-band of the available frequency bandwidth for use when transmitting into that sector. The sub-bands assigned to each sector are periodically changed, or "hopped", among the available sub-bands within the totally available bandwidth. Such sub-band hopping is a so-called "slow" hopping, in that it is not performed on a symbol-by-symbol basis but instead occurs only after more than one symbol has been transmitted in a sector on tones within the sub-band. Each sector employs its own pilot signal, which is assigned one or more tones within the sub-band currently employed by that sector. Similarly, for the uplink, the base station may employ a directional receiver antenna. Preferably, the mobile terminal only transmits on a tone that is within a sub-band that is allocated to the sector in which the mobile terminal is located. This, sub-band, however, need not correspond to the same location within the bandwidth as the sub-band used by the downlink to communicate with the mobile terminal.
-
公开(公告)号:ID26302A
公开(公告)日:2000-12-14
申请号:ID20000169
申请日:2000-03-06
Applicant: LUCENT TECHNOLOGIES INC
Inventor: LAROIA RAJIF , LI JUNYI , VANDERVEEN MICHAELA CATALINA
Abstract: An orthogonal frequency division multiplexing (OFDM) based spread spectrum multiple access system using offsetting between cells, and in particular, the use of tone offsetting and time offsetting, is disclosed. More specifically, frequencies that define the tone set of one cell is offset from the frequencies that define the tone set of at least one adjacent cell. In other words, if a first base station is using tones F1, F2, ..., FN within a frequency band, then a second base station adjacent to the first base station uses tones F1+ DELTA f, F2+ DELTA f ..., FN+ DELTA f within the same frequency band. Furthermore, the symbol timing of the base-station of one cell may be offset from the symbol timing of the base-station of an adjacent cell. Thus, if a first base station starts successive symbols at times T1, T2, and T3, then a second base station adjacent to the first base station starts its respective corresponding successive symbols at times T1+ DELTA t, T2+ DELTA t, and T3+ DELTA t. For example, in a cellular system with hexagonally shaped cells, the tone sets of two adjacent cells are offset by 1/3 of the spacing between adjacent tones, and the symbol timings of two adjacent cells are offset by 1/3 of a symbol period. Advantageously, the intercell interference is more uniformly distributed among users in a cell.
-
-
-
-
-