Abstract:
PROBLEM TO BE SOLVED: To provide a technique to be used when designing, adjusting or operating a wireless network, so as to provide a desired level of performance for the network. SOLUTION: An optimization process is applied to an information set characterizing a network. This optimization process contains an optimization stage before at least one, pre-frequency-assignment optimization stage, and this is applied prior to a frequency is allocated to one or a plurality of communication channels of a radio network. By the use of the output of the optimization process, one or plurality of operation parameters of the wireless network, such as transmission power of a base station, direction of an antenna, or the like are determined.
Abstract:
Techniques for use in designing, adjusting or operating a wireless network so as to provide a desired level of performance for the network. An optimization process is applied to a set of information characterizing the network. The optimization process includes at least a pre-frequency-assignment optimization stage, which is applied prior to assignment of frequencies to one or more communication channels of the wireless network. An output of the optimization process is utilized to determine one or more operating parameters of the wireless network, such as a base station transmit power or antenna orientation.
Abstract:
A method is disclosed, for designing an access network that is to carry communication traffic between end nodes and a core network. Information is provided that describes end node locations, the level of demand associated with each end node, available trunk types and their related capacities, and a cost structure. The cost structure includes a fixed overhead cost for each trunk type, and a service charge per unit distance for each trunk type. The provided information is incorporated in a linear program to find an optimal-cost access network. The linear program is solved to obtain a provisional solution that defines the composition and usage of each link of the optimal-cost access network. For each such link, the composition is defined by a fractional level of investment (incurring a like fraction of the corresponding overhead charge) in each pertinent trunk type. The provisional solution is rounded such that each trunk in which there is a fractional investment is either removed, or replaced by a trunk in which there is an integral investment.
Abstract:
Techniques for use in designing, adjusting or operating a wireless network so as to provide a desired level of performance for the network. An optimization process is applied to a set of information characterizing the network. The optimization process includes at least a pre-frequency-assignment optimization stage, which is applied prior to assignment of frequencies to one or more communication channels of the wireless network. An output of the optimization process is utilized to determine one or more operating parameters of the wireless network, such as a base station transmit power or antenna orientation.
Abstract:
Techniques for use in designing, adjusting or operating a wireless network s o as to provide a desired level of performance for the network. An optimization process is applied to a set of information characterizing the network. The optimization process includes at least a pre-frequency-assignment optimization stage, which is applied prior to assignment of frequencies to one or more communication channels of the wireless network . An output of the optimization process is utilized to determine one or more operating parameters of the wireless network, such as a base station transmit power or antenna orientation.
Abstract:
Real-time broadcast and multicast based packet transmissions/services over a wireless, local area networks (WLAN) may be improved by reducing the interference across neighboring access points (APs) while minimally impacting the performance of unicast transmissions/services. Minimal impact is assured by scheduling the transmission of multicast packet flows such that the duration of the time period required to transmit such flows is also minimized. One type of method provides a constant approximation of an optimal time period/schedule while another provides a logarithmic approximation of an optimal time