Abstract:
A communication system includes a decentralized, flat architecture where a plurality of base nodes each include controller capabilities so that a centralized base node such as a radio network controller is not required. At least one of the base nodes acts as an anchor node. The anchor node associates a time stamp with at least one packet and provides that to the plurality of base nodes. In one example, a multicast approach is used by a router device for distributing the packet and the associated time stamp to the plurality of base nodes. Each base node controls a timing of a transmission of the at least one packet over a wireless interface responsive to the associated time stamp.
Abstract:
A multicast status availability indication from an anchor (24) is provided to a plurality of base nodes (22) that are part of a multicast group serviced by the anchor (24). The availability status indication in one example is sent autonomously by the anchor (24) independent of any inquiry or attempted setup of a new session with that anchor by a base mode (22). The base modes (22) maintain a candidate anchor set that includes information regarding currently available anchors for establishing new sessions, for example.
Abstract:
The present invention provides a method for assigning a tracking area to a mobile unit based upon a plurality of location update frequencies. The method may include determining, at the mobile unit, a tracking area associated with the mobile unit based on a plurality of location update frequencies.
Abstract:
The present invention provides a method for assigning a mobile unit to a tracking area based upon a location update frequency. The method includes selecting one of a technology-specific tracking area and a shared tracking area based on a location update frequency associated with a mobile unit.
Abstract:
In handover in a wireless telecommunications network, dummy packets, or data packets with a last used sequence number indicator are transmitted from a source node eNB (2) to a target node (3). When the target node eNB (3) detects the information, it knows the sequence of data packets being received from the source node eNB (2) and which is the last one and its sequence number. Thus, data packets may be suitable ordered for delivery to a mobile terminal UE (1).
Abstract:
A method is provided of registering a mobile terminal in an area of overlapping cell coverage by first and second networks for wireless mobile telecommunications. The networks are of different types. The method comprises: storing an identifier of the mobile terminal; storing in a controller a first record of in which cell or group of cells the mobile terminal is located in the first network and a second record of in which cell or group of cells the mobile terminal is located in the second network; and providing the mobile terminal with information of both records and said identifier.
Abstract:
In a telecommunications system, such as E-UTRAN, a User Equipment 6 is connected to a base station eNB 8 by an early radio bearer, which is established using preset values stored at the UE 6 and at the eNB 8. This enables data to be transferred over the radio link prior to formal establishment of a radio bearer between the UE 6 and the eNB 8.
Abstract:
According to an aspect of the invention, a method for handover of a mobile terminal from a source node to a target node in a wireless telecommunications network includes the steps of making data forwarding of fresh data optional irrespective of the RLC mode, which may involve RLC-UM or RLC-AM bearers. The method may include providing an explicit instruction to the mobile terminal for each bearer on whether a bearer is subject to data forwarding or not. This may then be used by the mobile terminal to handle the buffered packets and PDCP SNs.
Abstract:
The present invention provides a method applicable to a mobile unit operating using Long Term Evolution (LTE) technology and having a single radio interface. The method controls a handover from a Voice over Internet Protocol (VoIP) call to a Circuit Switched (CS) call. The method comprises providing a CS call control message in a packet switched message, and routing the CS call control messages to a Mobile Switching Centre (MSC). Thereafter, a handover of the VoIP call to the CS call is initiated in response to receiving the call control message.
Abstract:
A method is provided of transferring a call connection with a mobile terminal from a first network to a second network. The first network is capable of handling both circuit-switched and packet-switched modes of connection. The second network is capable of handling one of the packet-switched or circuit-switched modes of connection but not both. The terminal is capable of both packet-switched and circuit- switched call modes of connection. The method comprises the first network: identifying the location of the mobile terminal with respect to at least one of the networks, identifying the mobile terminal as being in a mode of connection not usable in the second network, instructing the mobile terminal to transfer the call connection to the other mode of connection, and transferring the call connection to the second network.