MULTIPLE LOCATION LOAD CONTROL SYSTEM
    2.
    发明申请

    公开(公告)号:US20190159323A1

    公开(公告)日:2019-05-23

    申请号:US16258603

    申请日:2019-01-27

    Abstract: A multiple location load control system comprises a main device and remote devices, which do not require neutral connections, but allow for visual and audible feedback at the main device and the remote devices. The main device and the remote devices are adapted to be coupled together via an accessory wiring. The main device can be wired on the line side and the load side of the load control system. The main device is configured to enable a charging path to allow the remote devices to charge power supplies through the accessory wiring during a first time period of a half cycle of the AC power source. The main device and the remote devices are configured to communicate with each other via the accessory wiring during a second time period of the half cycle, for example, by actively pulling-up and actively pulling-down the accessory wiring to communicate using tri-state logic.

    MULTIPLE LOCATION LOAD CONTROL SYSTEM
    3.
    发明申请

    公开(公告)号:US20170238399A1

    公开(公告)日:2017-08-17

    申请号:US15583941

    申请日:2017-05-01

    Abstract: A multiple location load control system comprises a main device and remote devices, which do not require neutral connections, but allow for visual and audible feedback at the main device and the remote devices. The main device and the remote devices are adapted to be coupled together via an accessory wiring. The main device can be wired on the line side and the load side of the load control system. The main device is configured to enable a charging path to allow the remote devices to charge power supplies through the accessory wiring during a first time period of a half cycle of the AC power source. The main device and the remote devices are configured to communicate with each other via the accessory wiring during a second time period of the half cycle, for example, by actively pulling-up and actively pulling-down the accessory wiring to communicate using tri-state logic.

    Multiple location load control system

    公开(公告)号:US09681513B2

    公开(公告)日:2017-06-13

    申请号:US15331277

    申请日:2016-10-21

    Abstract: A multiple location load control system comprises a main device and remote devices, which do not require neutral connections, but allow for visual and audible feedback at the main device and the remote devices. The main device and the remote devices are adapted to be coupled together via an accessory wiring. The main device can be wired on the line side and the load side of the load control system. The main device is configured to enable a charging path to allow the remote devices to charge power supplies through the accessory wiring during a first time period of a half cycle of the AC power source. The main device and the remote devices are configured to communicate with each other via the accessory wiring during a second time period of the half cycle, for example, by actively pulling-up and actively pulling-down the accessory wiring to communicate using tri-state logic.

    BATTERY-POWERED CONTROL DEVICE
    5.
    发明申请

    公开(公告)号:US20190150252A1

    公开(公告)日:2019-05-16

    申请号:US16245027

    申请日:2019-01-10

    Abstract: Provided herein are examples of a remote control device that provides a retrofit solution for an existing switched control system. The remote control device may comprise a control circuit, a rotatable portion, a magnetic ring coupled to the rotatable portion, and first and second Hall-effect sensor circuits configured to generate respective first and second sensor control signals in response to magnetic fields generated by the magnetic elements. The control circuit may operate in a normal mode when the rotatable portion is being rotated, and in a reduced-power mode when the rotatable portion is not being rotated. The control circuit may disable the second Hall-effect sensor circuit in the reduced-power mode. The control circuit may detect movement of the rotatable portion in response to the first sensor control signal in the reduced-power mode and enable the second Hall-effect sensor circuit in response to detecting movement of the rotatable portion.

    CONTROLLING GROUPS OF ELECTRICAL LOADS

    公开(公告)号:US20180116040A1

    公开(公告)日:2018-04-26

    申请号:US15789912

    申请日:2017-10-20

    Abstract: A load control system may include control devices for controlling electrical loads. The control devices may include load control devices, such as a lighting device for controlling an amount of power provided to a lighting load, and controller devices, such as a remote control device configured to transmit digital messages for controlling the lighting load via the load control device. The remote control device may communicate with the lighting devices via a hub device. The remote control device may detect a user interface event, such as a button press or a rotation of the remote control device. The remote control device or the hub device may determine whether to transmit digital messages as unicast messages or multicast messages based on the type of user interface event detected. The remote control device, or other master device, may synchronize and/or toggle an on/off state of lighting devices in the load control system.

    Multiple location load control system

    公开(公告)号:US09699863B2

    公开(公告)日:2017-07-04

    申请号:US14720701

    申请日:2015-05-22

    Abstract: A multiple location load control system comprises a main device and remote devices, which do not require neutral connections, but allow for visual and audible feedback at the main device and the remote devices. The main device and the remote devices are adapted to be coupled together via an accessory wiring. The main device can be wired on the line side and the load side of the load control system. The main device is configured to enable a charging path to allow the remote devices to charge power supplies through the accessory wiring during a first time period of a half-cycle of the AC power source. The main device and the remote devices are configured to communicate with each other via the accessory wiring during a second time period of the half-cycle, for example, by actively pulling-up and actively pulling-down the accessory wiring to communicate using tri-state logic.

    BATTERY-POWERED CONTROL DEVICE
    9.
    发明申请

    公开(公告)号:US20180116039A1

    公开(公告)日:2018-04-26

    申请号:US15789666

    申请日:2017-10-20

    Abstract: Provided herein are examples of a remote control device that provides a retrofit solution for an existing switched control system. The remote control device may comprise a control circuit, a rotatable portion, a magnetic ring coupled to the rotatable portion, and first and second Hall-effect sensor circuits configured to generate respective first and second sensor control signals in response to magnetic fields generated by the magnetic elements. The control circuit may operate in a normal mode when the rotatable portion is being rotated, and in a reduced-power mode when the rotatable portion is not being rotated. The control circuit may disable the second Hall-effect sensor circuit in the reduced-power mode. The control circuit may detect movement of the rotatable portion in response to the first sensor control signal in the reduced-power mode and enable the second Hall-effect sensor circuit in response to detecting movement of the rotatable portion.

    Battery-powered control device
    10.
    发明授权

    公开(公告)号:US10219359B2

    公开(公告)日:2019-02-26

    申请号:US15789666

    申请日:2017-10-20

    Abstract: A remote control device may provide a retrofit solution for an existing switched control system. The remote control device may comprise a control circuit, a rotatable portion, a magnetic ring coupled to the rotatable portion, and first and second Hall-effect sensor circuits configured to generate respective first and second sensor control signals in response to magnetic fields generated by the magnetic elements. The control circuit may operate in a normal mode when the rotatable portion is being rotated, and in a reduced-power mode when the rotatable portion is not being rotated. The control circuit may disable the second Hall-effect sensor circuit in the reduced-power mode. The control circuit may detect movement of the rotatable portion in response to the first sensor control signal in the reduced-power mode and enable the second Hall-effect sensor circuit in response to detecting movement of the rotatable portion.

Patent Agency Ranking