Abstract:
A process for localized hardening of steel sheet components includes scanning a laser beam in a scan direction across a predetermined portion of the steel sheet component. The laser beam selectively heats material within the predetermined portion of the steel sheet component to a temperature of austenitizing transformation. During scanning of the laser beam across the predetermined portion, a source of external cooling is applied to the material within the predetermined portion and immediately behind the laser beam along the scan direction of the laser beam. The source of external cooling is selected to cool the material at a sufficiently rapid rate to form a locally hardened region that is defined substantially within the predetermined portion. Subsequent to applying the source of external cooling, the material within the predetermined portion of the steel sheet component is allowed to cool to ambient temperature.
Abstract:
A process for laser-welding pre-coated sheet metal plates comprises loading two pre- coated sheet metal plates at a workstation, such that edges of the plates that are to be welded together are butted against one another. Each plate has a steel substrate and a pre-coat layer, the pre-coat layer including an intermetallic alloy layer and a metallic alloy layer. In a single pass, an area of each plate adjacent to the edges that are butted against one another is irradiated with a defocussed laser beam, thereby melting material of the pre-coat layer within said area of each plate. During the single pass, a stream of a gas is used to blow the melted pre-coat material out of the irradiated areas of the two plates. Absent removing the two plates from the workstation, laser- welding the plates together is performed using a focused laser beam.
Abstract:
A process is disclosed for laser welding sheet metal plates having an anti-corrosion surface layer pre-coat. The plates are arranged one relative to the other in an edge- butting relationship. Using a laser beam having a first beam spot-size, a laser weld joint is formed along the adjacent edges of the sheet metal plates. Subsequent to forming the laser weld joint, a localized anti-corrosion surface layer is formed at least on the laser weld joint. In particular, a laser beam having a second beam spot-size larger than the first beam spot-size is scanned along the laser weld joint. During the scanning, a flow of a powdered anti-corrosion surface layer material is directed toward a portion of the laser weld joint that is being irradiated by the laser beam. The powdered material is melted by the laser beam and forms a layer adhering to the laser weld joint.
Abstract:
A process for removing a material that is adhered to an underlying surface includes using a laser beam to heat the material to reduce the strength of adhesion between the material and the underlying surface. A stream of gas is directed at the heated material to displace the heated material from the underlying surface.
Abstract:
A system includes a laser welder and a filler wire feed. The laser welder is configured to weld a workpiece to at least one additional workpiece to form a welded assembly. Each of the workpieces is formed from a steel material and comprises an aluminum based coating thereon. The filler wire feed is configured to feed a filler wire to an interface between the workpieces when the workpieces are being welded to each other to form the welded assembly. The filler wire comprises a composition that includes nickel and chromium. The filler wire is configured to bind with aluminum in the aluminum based coating so as to minimize formation of brittle intermetallics due to mixing of the aluminum in the aluminum based coating with the iron/steel material in the weld joint.
Abstract:
A process is provided for laser beam welding of surface treated steel components. Two steel components, at least one of which is a surface treated steel component, are relatively arranged to form a joint that is to be welded. Using a laser beam, the two steel components are irradiated along the joint so as to heat materials within each of the two steel components to a welding temperature, and thereby form a weld pool. During welding a metallic constituent is introduced into a leading edge of the weld pool, in front of the laser beam along a welding direction. The introduced metallic constituent combines with a species, which is released into the weld pool from the surface treated steel component, to form a compound that is stable within the weld pool at the welding temperature.
Abstract:
The invention provides an apparatus and a method of forming a material of low ductility including providing a first sheet made from a material of low ductility, providing an integrated forming device comprising a heat source and a forming element, and moving the forming element relative to the first sheet along a forming direction while simultaneously heating a localized portion of the first sheet along the forming direction at a substantially constant predetermined distance in front of the forming element. The predetermined distance is selected so as to yield a predetermined temperature to achieve a predetermined ductility at the localized portion of the first sheet when the forming element reaches the localized portion of the first sheet.
Abstract:
A forming system that includes a first die having a first die surface and a second die having a second die surface is provided. The first and the second die surfaces are configured to cooperate to form a die cavity therebetween so as to receive a workpiece therein. Coatings are formed on opposing portions of the first and second die surfaces. The coatings on the opposing portions of the first and the second die surfaces cooperate to be on opposite sides of the workpiece received in the die cavity. A ratio of Vanadium to Tungsten in the coatings is in the range between 0.31 and 0.45. In one embodiment, each of the coatings includes at least two layer configuration. In another embodiment, each of the coatings includes a predetermined thickness.
Abstract:
An optical wheel assembly for a laser transmission welding apparatus includes a double-convex optical lens having two spherical surfaces that are joined by a polished side surface extending circumferentially around the lens. Each of the two spherical surfaces has a known spherical diameter. The optical lens is disposed between a pair of dish cup holders, each having a spherical concave surface with the known spherical diameter and engaging the spherical surfaces of the lens. Each dish cup holder has an axial projection extending away from a side of the dish cup holder that is opposite the spherical concave surface. The axial projections are received within respective bearings that are mounted within a housing. The bearings allow the dish cup holders and the optical lens to rotate while pressure is being applied to plastic workpieces during laser transmission welding thereof.
Abstract:
A process is disclosed for laser-welding sheet metal plates that have an aluminum-silicon containing pre-coat layer. The pre-coated sheet metal plates are arranged one relative to another such that an edge of one of the plates is adjacent to and in contact with an edge of the other one of the plates, and a laser-welded joint is formed along the adjacent edges of the pre-coated plates. In particular the joint is formed absent removing the aluminum- silicon containing layer from along the adjacent edges, such that aluminum from the aluminum-silicon containing layer enters into the melt pool that is formed. Additionally, an alloying material is introduced into the melt pool during forming the laser-welded joint and forms a compound with at least some of the aluminum in the melt pool.