Abstract:
Bioerodible polymers which degrade completely into nontoxic residues over a clinically useful period of time, including polyanhydrides, polyorthoesters, polyglycolic acid, polylactic acid, and copolymers thereof, are used for the delivery of bioactive agents, including antibiotics, chemotherapeutic agents, inhibitors of angiogenesis, and simulators of bone growth, directly into bone.
Abstract:
A method for preparing hydroxamic acid polymers from primary amide polymers wherein polyvinyl monomers such as polyacrylamide are reacted with hydroxyl amine in aqueous solution at room temperature. The low reaction temperature is crucial to producing a high yield (70%) of polymer with hydroxamic acid groups and having a low carboxylic acid content (less than 15%, preferably less than 3%). The polymers display high metal affinity over a broad pH range. The polymers are particularly useful for biomedical applications due to the low carboxylic acid content and for the removal and purification of metals due to the high binding constants and rapid reaction rates.
Abstract:
A class of unsaturated polyanhydrides having double bonds available for secondary polymerization is disclosed. A crosslinked material having improved or different physical and mechanical properties can be prepared from these polyanhydrides, via secondary polymerization. The synthesis and characteristics of one unsaturated polyanhydride based on fumaric acid and its copolymers with aliphatic and aromatic diacids, prepared by either the melt-polycondensation method or by solution polymerization, is described in detail. These polymers are well suited for use in controlled release drug delivery devices. The polymers can also be used as a bioerodible bone cement where the polymer is first cast as a solution onto a bone fracture and then crosslinked by radiation or radical polymerization to yield a strong, adhesive material.
Abstract:
A method for synthesizing polyanhydrides in solution using coupling agents and a removable acid acceptor to effect a one-step polymerization of dicarboxylic acids. As used in the method, these coupling agents include phosgene, diphosgene, and acid chlorides. Insoluble acid acceptors include insoluble polyamines and crosslinked polyamines such as polyethyleneimine and polyvinylpyridine and inorganic bases such as K2CO3, Na2CO3, NaHCO3, and CaCO3. The only byproduct formed is a removable hydrochloric acid-acid acceptor. Examples are provided of the polymerization of highly pure polyanhydrides using phosgene, diphosgene or an acid chloride as the coupling agent, in combination with either an insoluble acid acceptor or a soluble acid acceptor in a solvent wherein the polymerization byproduct or polymer is insoluble. A particularly important application of these polyanhydrides is in the formation of drug delivery devices containing bioactive compounds. The method is also useful in the polymerization of dicarboxylic acids including heat liable dipeptides of glutamic or aspartic acid.
Abstract:
Polyanhydrides with uniform distribution of alkyl and aromatic residues are prepared by melt polycondensation or solution polymerization of p-carboxyphenoxyalkanoic acids or p-carboxyphenylalkanoic acids. These polymers are soluble in common organic solvents and have low melting points, generally in the range of 40-100°C. The polyanhydrides are especially well suited for forming bioerodible matrices in controlled bioactive compound delivery devices. A polymeric matrix formed according to the method described here degrades uniformly during drug release, preventing the wholescale channeling of the bioactive compound into the environment, and eliminating the problem of the presence of the polymer matrix at the site long after drug release. The polymer displays zero-order kinetic degradation profiles over various periods of time (days to months), at a rate useful for controlled drug delivery. Furthermore, a desired degradation rate may be obtained by choosing the appropriate length of the aliphatic moiety.
Abstract:
A polyanhydride suitable for use as a matrix material in controlled delivery devices polymerized from monomers of general formula (I), wherein R, R', and R'' are the same or a different aliphatic chain of C1 to C20 or hydrogen; m, n, and p are integers from 0 and 20; y is 0 or 1; and, if y is 0, one of R or R' is not H.
Abstract:
Des polyanhydrides présentant une distribution uniforme de résidus aromatiques et d'alkyle sont préparés par fusion-polycondensation ou par polymérisation en solution d'acides p-carboxyphénoxyalcanoïques ou d'acides p-carboxyphénylalcanoïques. Ces polymères sont solubles dans des solvants organiques courants et ont des points de fusion bas, généralement de 40 à 100°C. Les polyanhydrides sont particulièrement bien appropriés à la formation de matrice de bio-érosion dans des dispositifs d'apport régulé de composés bioactifs. Une matrice polymère formée selon le procédé ci-décrit se dégrade uniformément pendant la libération des médicaments, empêchant la canalisation totale du composé bioactif dans l'environnement, et éliminant le problème de la présence de la matrice polymère longtemps après la libération du médicament. Le polymère présente des profils de dégradation cynétiques d'ordre zéro sur des périodes de temps diverses (de quelques jours à plusieurs mois) à une vitesse utile à l'apport régulé de médicament. En outre, une vitesse de dégradation désirée peut être obtenue en choisissant la longueur appropriée de la moitié ou fraction aliphatique.
Abstract:
Selon un procédé de préparation de polymères d'acide hydroxamique à partir de polymères d'amide primaires, des monomères de polyvinyle, tels que le polyacrylamide, sont mis en réaction avec de l'amine hydroxyle dans une solution aqueuse à la température ambiante. La température basse de réaction est essentielle pour obtenir un haut rendement (70%) de polymère avec des groupes d'acide hydroxamique et ayant une faible teneur en acide carboxylique (moins de 15%, de préférence moins de 3%). Ces polymères présentent une affinité élevée pour des métaux dans une large plage de pH. Ces polymères sont particulièrement utiles pour des applications biomédicales, compte tenu de leur faible teneur en acide carboxylique et pour l'élimination et la purification de métaux, compte tenu de leur constante élevée de liaison et de leur vitesse élevée de réaction.
Abstract:
A method and devices for localized delivery of a chemotherapeutic agent to solid tumors, wherein the agent does not cross the blood-brain barrier and is characterized by poor bioavailability and/or short half-lives in vivo, are described. The devices consist of reservoirs which release drug over an extended time period while at the same time preserving the bioactivity and bioavailability of the agent. In the most preferred embodiment, the device consists of biodegradable polymeric matrixes, although reservoirs can also be formulated from non-biodegradable polymers or reservoirs connected to implanted infusion pumps. The devices are implanted within or immediately adjacent the tumors to be treated or the site where they have been surgically removed. The examples demonstrate the efficacy of paclitaxel, camptothecin, and carboplatin delivered in polymeric implants prepared by compression molding of biodegradable and non-biodegradable polymers, respectively. The results are highly statistically significant.
Abstract:
Blends of polymers having properties distinct from the individual polymer components, and that are suitable for use as carriers of pharmaceutically active agents, are prepared from two or more polyanhydrides, polyesters or mixtures of polyanhydrides and polyesters. The blends have different properties than the polymers used to prepare the blends, providing a means for altering the characteristics of a polymeric matrix without altering the chemical structure of the component polymers. Blends of various polyanhydrides, polyesters, and polyanhydrides and polyesters, containing pharmaceutically active agents, are prepared using solvent mixing or melt mixing procedures. It has been discovered that the rate of release of the agent from the blends is different than the rate of release from the individual polyanhydride and polyester polymer components, being a function of the blend composition.