Abstract:
The present invention provides a resonant cavity including a planar two-dimensional periodic dielectric structure which exhibits a photonic band gap and a defect in the periodic dielectric structure which results in an electromagnetic mode within the photonic band gap. The photonic band gap effects an in-plane spacial confinement of electromagnetic radiation generated within the structure. The electromagnetic radiation is vertically confined by total internal reflection.
Abstract:
A periodic dielectric structure and method of fabricating same, the structure having a three-dimensional photonic bandgap. The structure includes a plurality of layers, at least one layer having a stratum of a first material having a first dielectric constant and a plurality of parallel grooves along a first axis lying in the plane of the layer, the grooves including a second material having a second dielectric constant; and a plurality of parallel channels formed through the plurality of layers in a second axis orthogonal to the plane of the layers, the channels being adapted to comprise a third material having a third dielectric constant, thereby resulting in the structure having three-dimensional periodicity. In preferred embodiments, the second and third materials include air.
Abstract:
The present invention provides a resonant microcavity which includes a periodic dielectric waveguide, and a local defect in the periodic dielectric waveguide which accommodates spatial confinement of radiation generated within the waveguide around the defect. In an alternative embodiment, the present invention provides a method of enhancing radiation confinement within a resonant microcavity and minimizing radiation losses into an associated substrate, the microcavity configured within a periodic dielectric waveguide as a local defect which exhibits spacial radiation confinement, the method including the step of increasing the refractive index contrast between the microcavity and the substrate.