Abstract:
Antriebsstromversorgungsvorrichtung, die einen Permanentmagnet-Synchronmotor (nachfolgend PM-Motor genannt) mit N Teilen von Phasen (N ist eine positive Ganzzahl von 3 oder größer) antreibt, indem eine Gleichstrom-Stromversorgung (1) eingesetzt wird, umfassen: ein Impulsspannungserzeugungsmittel (2), das eine Eingabe aus Wechselstromeingangsanschlüssen (a, b) über eine Drossel (3) aus der Gleichstrom-Stromversorgung (1) empfängt, ein Polaritätsumschaltmittel (5), das mit Gleichstromausgabeanschlüssen (c, d) des Impulsspannungserzeugungsmittels (2) verbunden ist und welches am Impulsspannungserzeugungsmittel (2) erzeugte Impulsspannung als Wechselstrom an den PM-Motor liefert, indem für jede Phase des PM-Motors umgeschaltet wird, einen Glättungsinduktor, um die Ausgabe des Polaritätsumschaltmittels (5) zu glätten, einen Drehpositionssensor (6), um eine Drehposition des PM-Motors (4) zu detektieren und ein Drehpositionssignal auszugeben, und ein Steuermittel (7), um EIN/AUS-Steuerung von Schaltern des Impulsspannungserzeugungsmittels (2) und des Polaritätsumschaltmittels (5) durchzuführen, wobei das Impulsspannungserzeugungsmittel (2) vier reverse konduktive Halbleiterschalter (S1, S2, S3, S4), die als eine Brücke miteinander verbunden sind, und einen...
Abstract:
In order to provide a pulse power supply device using regenerating magnetic energy stored in a discharge circuit to a capacitor so as to use it as next discharge energy and supplying a bipolar pulse current with high repetition, a bridge circuit is composed of four inverse-conductive semiconductor switches, a charged energy source capacitor is connected to a DC terminal of the bridge circuit, and an inductive load is connected to its AC terminal. A control signal is supplied to gates of the inverse-conductive semiconductor switches, and a control is made so that when a discharge current rises, is maintained or is reduced, all the gates are turned off, and the magnetic energy of the electric current can be automatically regenerated to the energy source capacitor by a diode function of the switches. Further, a large-current power supply is inserted into a discharge circuit so as to replenish energy loss due to discharge, thereby enabling high-repetition discharge.
Abstract:
Magnetenergie-Wiederherstellschalter, der eine Schutzschaltung aufweist und zwischen einer Wechselstromversorgung und einer Last eingefügt ist, um gegen Überspannung und Überstrom zu schützen, wobei der Magnetenergie-Wiederherstellschalter umfasst: – eine aus vier Halbleiterschaltern vom rückwärts leitenden Typ konstruierte Brückenschaltung; – einen zwischen Gleichstromanschlüssen der Brückenschaltung verbundenen Kondensator, der Magnetenergie beim Abschalten eines Stroms aufnimmt und speichert; und – Steuermittel; wobei die Schutzschaltung umfasst: – eine parallel zum Kondensator geschaltete Spannungsdetektionseinheit zum Detektieren einer Spannung des Kondensators; und – eine parallel zum Kondensator verbundene Entladeschaltung, die einen Entladewiderstand und einen in Reihe verbundenen Entladeschalter aufweist; und – eine zwischen der Wechselstromversorgung und der Last eingefügte Stromdetektionseinheit, die den Strom detektiert, der durch die Last fließt; wobei das Steuermittel – jeden der vier Halbleiterschalter vom rückwärts leitenden Typ synchron zur Spannung der Wechselstromversorgung und mit der Frequenz der Wechselstromversorgung so steuert, dass jeweils diagonal gegenüberliegende geschaltete...
Abstract:
PROBLEM TO BE SOLVED: To provide a low-loss current-fed series resonance DC/DC converter that can bi-directionally supply DC power and can perform soft switching with simple control regardless of power supply output voltage.SOLUTION: The current-fed series resonance DC/DC converter discharges electrostatic energy accumulated on capacitors CM1 and CM2 by turning on MERSs 101 and 102 to accumulate the energy on an inductor Lm as magnetic energy, and accumulates the magnetic energy accumulated on the inductor Lm onto a capacitor on the power receiving side by turning off the MERS on the power receiving side earlier than the MERS on the power supplying side, and charges a battery on the power receiving side with the electrostatic energy accumulated on the capacitor.
Abstract:
PROBLEM TO BE SOLVED: To provide a power conversion device that supplies an output of an AC power supply to a load by adjusting it, is compact and low in loss, and can perform PFC by soft switching. SOLUTION: The power conversion device 1 is constituted of an inductor L connected to the AC power supply 20 and the load 30 in series, a full-bridge type MERS 100 connected to the load 30 in parallel, a control circuit 110, a current direction switcher 200 serially connected between the inductor L and the load 30, and an ampere meter 300. The control circuit 110 feeds back a current detected by the ampere meter 300, repeatedly switches on/off one pair of semiconductor switches corresponding to the positive side of the output of the AC power supply 20 out of a pair of reverse conductive semiconductor switches SW2, SW3 and a pair of reverse conductive semiconductor switches SW1, SW4 which constitute the full-bridge type MERS 100, and keeps the other pair off. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To derive power efficiently from a low-voltage AC power supply to supply it to a load. SOLUTION: A power converter 1 includes an MERS 100 and a control means 105, and is connected in parallel between a series circuit composed of an AC power supply 210, a resistance R, and a reactor L and a load 300. The control means 105 switches on and off an inversely conductive semiconductor switch making up the MERS 100. The MERS 100 thus boosts an output from the power supply 210 and adjusts a current flowing through the power supply 210 to prevent the current from exceeding the rated current of the power supply 210. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a power conversion device capable of achieving a PFC action of an input current and AC-DC conversion with suppressed switching loss, using a magnetic energy regenerative switch having a soft switching function.SOLUTION: The power conversion device 1 includes: an input section 100; a MERS 110; an output section 120; and a low-pass filter comprised of an inductor L and a capacitor C. The capacitor C is connected in parallel between the input section 100 and the MERS 110, and the inductor L is connected in series between the input section 100 and the MERS 110 to achieve a PFC action of an input current and to suppress loss with simple control without necessity of input sensor.
Abstract:
PROBLEM TO BE SOLVED: To provide an induction power supply system, a power receiving device and a control method which have a high efficiency independently of a degree of coupling and leakage inductance of a transformer.SOLUTION: The induction power supply system 10 comprises: a power supply device 11 provided with an AC power supply VS, a primary coil L1, and a series circuit; and a power receiving device 12 provided with a secondary coil L2, a magnetic energy regeneration switch 100, a rectifier DB, a load LD, and wireless control devices 201, 202. A current flows into the primary coil L1 from the AC power supply VS, and thereby, a magnetic field is generated in the primary coil L1, and a current flows into the secondary coil L2 by the magnetic field. The wireless control devices 201, 202 control a magnetic energy regeneration switch 100 based on the current flowing into the primary coil L1, and thereby, resonance is always made to be maintained with capacitors CM1, CM2 of the magnetic energy regeneration switch 100 even if a leakage inductance Ls of the secondary coil L2 changes.